菜单
  

    2.2.   Particle model

    of 6:7

    · 105

    m2=kg.

    research of this process. To solve the reaction–diffusion equation inside the catalyst pellet, a pore structure model and a diffusion model are needed. Often used pore structure models are the micro- and macro pore model of Wakao and Smith (1962), the random pore model of Johnson (1965), the grain model of Szekely and Evans (1971). More recently, a more detailed and realistic three-dimensional pore network model has been proposed by Rieckmann and Keil (1999). The diffusion fluxes are usually mod- elled with the dusty gas model, Maxwell–Stefan model, Wilke and Wilke-Bosanquet models (Solsvik and Jakobsen, 2013). One may refer to the works of Solsvik and Jakobsen (2012a) for a detailed summary of different diffusion models. For catalyst pellet con- taining bi-modal pore size distribution, the micro- and macro pore model of Wakao and Smith (1962) with the Wilke formular can  be a good option for practical reaction engineering calculations (Hegedus, 1980).

    2. Mathematical modeling

    2.1. Reaction kinetics

    In this work, the micro- and macro pore model of Wakao and Smith (1964, 1962) was applied which was specifically    developed

    Fig. 1.  Triangle reaction network for n-butane oxidation (Wellauer et al., 1986).

    Table 1

    Kinetic parameters for partial oxidation of n-butane taken from Guettel and Turek (2010).

    The triangle (three-reaction) network as shown in Fig. 1 was used in this work which includes the main reaction of n-butane to maleic  anhydride,  total  oxidation  of  n-butane  to  carbon  oxides

    (CO2    and  CO)  and  consecutive  MAN  oxidation  to  CO2    and   CO

    Y.  Dong et al. / Chemical Engineering Science 142 (2016)   299–309 301

    for catalyst pellets containing bi-modal pore structure. In this model, the pore structure of the catalyst pellets is described by four parameters: mean macro-pore diameter dM, mean micro-pore

    Table 3

    Properties of  the catalyst pellet  (Guettel and Turek,   2010).

    Property Symbol Value Unit

    diameter dm, macro-pore porosity εM  and micro-pore porosity  εm.           

    The specific surface area (surface per catalyst weight) Sg and pellet density ρpellet are directly related to the pore structure and can be evaluated as follows (Hegedus,  1980):

    ρpellet  ¼ ρsolidð1— εtotalÞ;     εtotal  ¼ εM þεm ð9Þ

    Combining Eqs. (8) and (9), one   obtains:

    In the model of Wakao and Smith (1964, 1962), both Knudsen diffusion and molecular diffusion are considered and the effective diffusivity of each species is expressed   as

    ε2    1þ3εM Þ

    where Deff ;i is the effective diffusivity of each species, λpellet is the effective thermal conductivity of the pellet, ζ is the  dimensionless

    radial cylindrical coordinate of the pellet. In this study, the con- servation equations were only solved along the radial coordinate

    Deff ¼ DM ε2

    1— εM

    Dm

  1. 上一篇:注射成型过程中的聚丙烯填充物英文文献和中文翻译
  2. 下一篇:模拟列车断裂性能的工具英文文献和中文翻译
  1. 数控机床英文文献和中文翻译

  2. 数控车床附件的研究英文文献和中文翻译

  3. 数控车床上磨削主轴的分析

  4. 车床主轴角摆动的工件锥...

  5. 数控机床改造英文文献和中文翻译

  6. 机床结构动态性能预测英文文献及中文翻译

  7. 高速切削加工组合机床英文文献和中文翻译

  8. 新闻微信公众号的发展策略研究

  9. 桥梁工程英文文献和中文翻译

  10. 时代国际大厦基坑围护方案设计

  11. 城市高层住宅小区物业管...

  12. 我国金融危机的可能性和危机管理

  13. 论反不正当竞争法对知识产权的保护和限制

  14. 感应加热电源研究现状及发展趋势

  15. 流动儿童学习适应问题研究+文献综述

  16. 仿人头像机器人文献综述和参考文献

  17. 竞聘上岗在企业改革中的探索与实践

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回