菜单
  

    The factors (parameters) involved in an experiment can   be

    either quantitative or qualitative. When the initial design and analysis are considered, both types of factors are treated identically. The experimenter tries to determine the differences between the levels of factors. The experimenter is usually interested in creating an interpolation equation for the response variable in the experiment. This equation is an empirical model of the process that has been evaluated. In general, the procedure used for fitting empirical models is called regression analysis (Ref 19).

    3.1 Regression Modeling Approach

    The aim of multiple regression modeling is to determine the  quantitative  relations  between  independent  variables ðx1; x2; ... ; xk Þ and dependent variable (y). The   relationship

    1 1

    3.2 Analysis of Variance

    The objective of the analysis of variance (ANOVA) is to evaluate the effects of the process parameters on the response and to measure the adequacy of the statistics obtained from the multiple regression equations using the experimental data. In other words, ANOVA checks whether the effect of process parameters (factors) on the desired response is important or not. In addition, the ANOVA method is associated with the regression modeling approach. Therefore, it is essential to perform the general regression significance test by integrating the ANOVA method and the regression modeling approach. This situation can be expressed more clearly by the following equations:

    between  these  variables  is  characterized  by  a mathematical n 2

    model which is called a regression model. The regression model is fit to set of sample data (Ref 19). Commonly used the mathematical models are represented as follows:

    y ¼ f ðx1; x2; ... ; xk Þ ðEq 1Þ

    A linear regression equation can be written as  follows:

    y ¼ b0  þ b1x1  þ b2x2  þ e ðEq 2Þ

    This  equation  is  a  multiple  linear  regression  model     with

    two factors. The linear term is used because the, b0, b1, b2, unknown parameters in Eq 2 and, e, experimental error are a linear function. In general, the response (y) is associated   with

    k regressor variables. In this case, the multiple linear regres- sion models can be written as  follows:

    y ¼ b0 þ b1x1 þ b2x2 þ ··· þ bkxk þ e ðEq 3Þ

    These models are more complex  than Eq 3  can  be analyzed by  the  multiple  linear  regressions  modeling  approach.  The

    first-order  and  the  second-order  models  can  be  written   as

    where  n  is  the  number  of  experiments  yi   is  the   observed

    x3  ¼ x1x2; b3  ¼ b12 ð Þ

    (measured) response, ^yi  is the fitted (desired) response, and ¯^yi

    Y1  ¼ b0  þ b1x1  þ b2x2  þ b12x1x2  þ b3x3  þ e ðEq 5Þ

    is the mean value of yi. Also, SSE  is the error sum of   squares,

    SST is the total sum of squares, F is the test tool to control whether  the  regression  model  is  statistically  appropriate or

  1. 上一篇:模拟列车断裂性能的工具英文文献和中文翻译
  2. 下一篇:固液搅拌罐的CFD模拟英文文献和中文翻译
  1. 注射成型过程中的聚丙烯...

  2. 立体光照成型的注塑模具...

  3. 注射成型机配置设计英文文献和中文翻译

  4. 塑料制品的注塑模具设计...

  5. 异型件缠绕成型的研究英文文献和中文翻译

  6. 塑料注射模具设计U型铣槽...

  7. 塑料制品模具设计英文文献和中文翻译

  8. 《稻花香》装饰画设计

  9. 多肉植物市场国内外发展研究现状

  10. 基于反向拍卖的云计算资源分配研究

  11. 轴向过载加速度测试方法国内外研究现状综述

  12. 辉县高跷艺术调查报告

  13. 利用动漫展览促进无锡旅游发展分析

  14. 大学生就业期望目的地期望薪酬的问卷调查表

  15. 参展观众对科技信息传播的影响研究

  16. 日语论文跨文化交际角度看中日亲属称谓差异

  17. jsp毕业设计课题管理系统的设计与实现

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回