摘要:采用水热法制备纯相Mn3O4及负载型凹凸棒黏土- Mn3O4(Att- Mn3O4)复合材料用做超级电容电极材料,借助X射线衍射(XRD)、扫描电镜(SEM)测试对其物理性质做了表征。结果表明,Mn3O4基本呈棒状结构,较好地分散负载在凹凸棒粘土表面。以该复合材料为活性物质制成电极,采用循环伏安、恒流充放电等电化学方法考察其电化学性能,结果表明:在0.5mol·L -1Na2SO4溶液中,扫描电位范围为0-1.0V扫描速率下,循环伏安曲线具有良好的矩形特征。在1.0A·g - 1电流密度下,电容器充放电性能的最佳电位范围为0-1.0V,此时,比容量和储能密度均达到最大,达80.25 F/g和1.41Wh/kg,而纯Mn3O4电极材料的比电容为80.4F/g,可见凹凸棒粘土的加入可以明显提高其电化学性能。通过恒电流充放性能测试表明,复合材料较好的电化学稳定性,有望作为一种新型的超级电容器电极材料。54129
毕业论文关键词:超级电容器,Mn3O4,电极材料,凹凸棒黏土
Abstract:Pure Mn3O4 and attapulgite and Mn3O4 (Att -Mn3O4) composite material used as electrode materials for supercapacitors was synthesized by hydro-thermal method. The obtained product was characterized by XRD and SEM techniques and results showed that Mn3O4 presenting as nanorods were uniformly loaded onto the surface of Attapulgite. Electrochemical properties of the resultant were investigated by charge/discharge and cyclic voltammetry method using a three-electrode system, in which working electrode was made from Att -Mn3O4. Based on CV curves (vs.SCE), the working voltage for Att -Mn3O4 with ideal capacitor behavior were 0-1.0V in 0.5mol·L- 1 Na2SO4. At 1.0A·g - 1current density, different potentials were applied to obtain the optimum cell voltage of Att -Mn3O4 was 0-1.0V, and the highest specific capacity and power density were achieved under this condition, it were 141.2 F/g and 41.4Wh/kg, respectively. At the same current density and working voltage, Att-Mn3O4 electrode has higher specific capacity than that of Mn3O4 by the constant current charge/discharge test. This results indicating that the doping of attapulgite is helpful to improve the electrochemical performance of Mn3O4 and has potential application in the electrode materials.
Keywords: Supercapacitor, Electrode material, Mn3O4, Attapulgite
目 录
1 引言 4
1.1 超级电容器和传统电容器的比较 4
1.2 超级电容器的电极材料 4
2 实验部分 5
2.1材料合成及表征 5
2.2电化学性能测试 5
3 结果与讨论 6
3.1结构表征 6
3.2 Att- Mn3O4电化学性能测试 7
结论 12
参考文献 14
1 引言
超级电容器是近年发展起来的一种新型储能器件,在通讯技术、工业领域、电动力汽车等方面具有广泛的应用与研发,具有大功率放电特性、能够大容量存储电能的优点[1]。超级电容器与传统的电容器有所不同,它是通过电极和电解液之间的界面或电极表面或相的可逆的氧化还原反应存储电荷的[2]。电极材料是超级电容器最为关键的部分,目前超级电容器的电极材料种类比较单一,可见寻找新型电极材料至关重要[3]。
1.1 超级电容器和传统电容器的比较