菜单
  

    1 在一阶方程中的应用
        变换法在解微分方程中应用的实质是将我们不熟悉的微分方程通过变换法化为我们熟悉的,或者说是容易求解的微分方程,然后解出该方程, 最后将变量带回,以达到将一般的方法难以解出的方程简单的求解出的目的。
    一阶常微分中许多方程的求解问题都可以转化为求解变量分离方程, 多种一阶微分方程都可通过变换法等方法, 最终转换成变量分离或者其它可求解类型的微分方程方程, 进而求出结果, 以下我们以可以转化为变量分离方程的微分方程为例子简单的阐述变量变换的应用.
    步骤:(1)通过变换法将方程转化成变量分离方程.
          (2)分离变量.
              (2)对方程两边同时积分, 整理通解.
              (3)根据初始条件来得到方程的特解.
     1.1变量分离方程
        我们定义变量分离方程为形如
     
    的微分方程为变量分离方程.
       运用变量分离的方法将原方程化为
     
    的形式,然后将该方程左右两边进行积分,很容易就可以求解该方程,这是最基本的微分方程的类型,后面的许多其他类型我们最终也会通过适当的变换转化成该类型进行计算.
  1. 上一篇:小概率事件及其应用+文献综述
  2. 下一篇:几个超对称方程的精确解
  1. 行列式在高中数学中的应用

  2. 多项式拟合在变形数据分析中的应用

  3. 因子分析在学生成绩综合评价中的应用

  4. 方差分析在小麦亩产量中的应用

  5. 中心极限定理在生活中的应用

  6. 大数定律在生活中的应用

  7. 概率论在经济中的应用

  8. 杂拟谷盗体内共生菌沃尔...

  9. 中考体育项目与体育教学合理结合的研究

  10. 当代大学生慈善意识研究+文献综述

  11. 乳业同业并购式全产业链...

  12. java+mysql车辆管理系统的设计+源代码

  13. 酸性水汽提装置总汽提塔设计+CAD图纸

  14. 大众媒体对公共政策制定的影响

  15. 河岸冲刷和泥沙淤积的监测国内外研究现状

  16. 电站锅炉暖风器设计任务书

  17. 十二层带中心支撑钢结构...

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回