摘要当代教育理念从应试教育转向素质教育,那就是对学生的能力提出了更高的要求。因此在中学数学教学中渗透数学建模的思想具有重要意义。数学建模思想对学生来说是一种新的教学模式,有利于培养学生的转化意识,想象能力和创新精神。这种开放式的教学模式有助于激发学生学习兴趣,认识数学的科学价值和人文价值,形成理性的数学思维,用辩证的思维去看待世界。本文将从实施数学建模的理论依据、在中学数学解题中如何渗透数学建模思想以及如何培养学生的数学建模能力几个方面来研究的。通过研究也得出了一下几点结论:1、在中学数学教学中渗透数学建模思想不仅可以培养学生的团队合作精神而且可以培养学生的数学思维。2、本文通过从建构主义理论和元认知理论分别对在中学数学教学中渗入建模思想的方法做了简单的分析,在教学和解题中应灵活的运用这三种方法。3、培养学生的数学建模能力需要教师对整个教学的教学前、教学中、教学后做一个整体的规划。47437
Abstract Contemporary educational philosophy shift from examination-oriented education quality education, it shows that the student's ability is put forward higher requirements. So the penetration of mathematical modeling in middle school mathematics teaching thought is of great significance.Mathematical modeling thought for students is a new teaching mode, to cultivate students' consciousness, imagination and innovation spirit.The open teaching mode is helpful to stimulate students interest in learning, understanding of mathematical science value and humanistic value, form a rational mathematical thinking, dialectical thinking to see the world.This article from the implementation of the theory basis of mathematical modeling, how to permeate mathematical modeling in middle school mathematics problem-solving ideas and how to develop the students' ability of mathematical modeling to study several ways.By studying the several conclusions:1.Mathematical modeling ideas in middle school mathematics teaching can not only cultivate the students' team spirit and can cultivate the students' mathematical thinking.2.In this paper, from the constructivism theory and metacognitive theory of modeling thought in the middle school mathematics teaching method to do the simple analysis, in the teaching and the problem solving should be flexible to use these three methods.Develop the students' ability of mathematical modeling to teachers' teaching to the teaching of the before and after the teaching, teaching make a overall planning.
毕业论文关键词:数学建模;思想方法;函数; 几何;建构主义
Keyword: Mathematical modeling:Thinking;function; The geometric; Constructivism
目 录
第一章 数学建模思想的概论 5
第二章 数学建模的理论依据 6
第一节 建构主义理论 6
第二节 元认知理论 7
第三节 建构主义、元认知理论与数学建模 7
第三章 数学建模能力的具体解题案例 8
第一节 建立方程模型 8
第二节 建立函数模型 9
第三节 建立几何模型 9
第四节 概率统计模型 10
第四章 如何培养学生数学建模能力 11
第一节 在课堂教学中,向学生渗入数学建模思想