菜单
  
    进一步的工作由傅里叶展开,基于他的傅里叶级数,他给出了一个新的分数阶导数的定义,从而可以定义任何一个性质足够好的函数的分数阶导数。上面的历史仅仅介绍了分数阶导数的历史,而分数阶微积分更为正式的工作由 Abel 和 Liouville 的论文所展开,该论文主要᧿述了等时曲线的计算问题[3]。 在1832-1837年,一系列著名的论文使得 Liouville 成为了分数阶微积分理论的创始人。虽然Liouville 并没有完全解释清楚分数阶微积分理论的各个问题,但是在他的论文里,对分数阶微积分的展望和根本观点被阐述的十分清楚。他对分数阶导数定义最基本的形式采用了指数函数,这被证明是足够好的。 Liouville 将他所创立的分数阶微积分理论引入到了更一般的应用当中。Riemann 紧接着他的工作开始了研究,并且给出了 Liouville 的积分形式。该积分公式成为了研究分数阶导数领域一个主要的形式。注意到这个时候,Liouville 和 Riemann 都在解决所谓的完备性函数。
    Letnikov  采用了一条新的途径,也就是利用极限和差分去解决分数阶微分问题。他的定义在部分方面和 Riemann,Liouville 的定义不谋而合, 并且进一步在代数上证明的他的定义是和里的。在他所发表的一篇很长的论文中,他将分数阶导数完整的理论建立起来。 进入 19世纪以来,分数阶微积分的理论不断发展。许多新形式的表述被不断引入。而实际应用也随着物理学,化学和工程的发展而发展。例如在信号处理领域,Marks 和 Hall 的论文,  Olmestead 和 Handelsman 在扩散过程领域。分数阶微积分领域由于其在全局的性质,使得在物理领域,越来越受到关注[6]。 这篇文章的结构如下,在第二章和第三章,将介绍 Riemann-Liouville 分数阶导数的定义和性质。第四章介绍他们在经典物理,自动控制,图像处理的应用。在第五章将介绍分数阶导数的数值计算和计算机编码实现。最后将进行总结。

  1. 上一篇:密码函数库的研究和实现
  2. 下一篇:拟凸函数的性质及应用
  1. 通过数据分析对人口的年龄结构和养老问题

  2. 中国各省份经济发展状况...

  3. 石油价格和黄金价格的联动性分析

  4. 数学建模思想融入经济数...

  5. 医学肾脏图像的去噪和融合研究

  6. 复变函数中辐角原理的应用举例

  7. 房地产和钢铁板块联动性分析

  8. 大众媒体对公共政策制定的影响

  9. 中考体育项目与体育教学合理结合的研究

  10. 河岸冲刷和泥沙淤积的监测国内外研究现状

  11. 电站锅炉暖风器设计任务书

  12. 乳业同业并购式全产业链...

  13. 十二层带中心支撑钢结构...

  14. 杂拟谷盗体内共生菌沃尔...

  15. 当代大学生慈善意识研究+文献综述

  16. java+mysql车辆管理系统的设计+源代码

  17. 酸性水汽提装置总汽提塔设计+CAD图纸

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回