菜单
  

    2.3.3数形结合方法

    华罗庚教授曾经说过:“数缺形时少直观,形缺数时难入微。”数与形是客观事物的不可分离的两个数学表象源`自·751~文;论:文'网[www.751com.cn,它们各自有特定的含义,但它们之间又互相渗透,相辅相成,在一定条件下可以相互转化。解题时,将欲解的问题转化成为之等价的图形问题,不仅可以使问题简捷获解,而且还能给我们提供有效的几何直观,加深对问题实质的理解。

    “所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想。”

    数形结合可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。实现数形结合,常与以下内容有关:

    ①实数与数轴上的点的对应关系;

    ②函数与图像的对应关系;

    ③曲线与方程的对应关系;

    ④以几何元素和几何条件为背景,建立起数的概念,如复数、三角函数等;

    ⑤所给的等式或代数式的结构含有明显的几何意义,如等式 。

    纵观多年的中考试题,巧妙运用数形结合思想方法解决一些抽象的数学问题,有事半功倍的效果。数形结合的研究重点是“以形助数”。

    数形结合的思想方法应用广泛,有时候碰到一些难解的代数问题,常常很难发现解题途径,运用属性结合,可以很快找到解题的思路并且避免一些复杂的推理和计算。比如在解方程和不等式、求函数的值域、最值的问题中,常常需要借助图像来将数量在关系表示在图像中,从而达到简化问题的目的,帮助我们解题。

  1. 上一篇:多元统计分析的浙江省环境质量情况研究
  2. 下一篇:上海市CPI指数的时间序列分析
  1. 教师视野下我校校园道路交通安全调查与分析

  2. 杭州市GDP与旅游收入的相关性分析与预测

  3. 黄金价格综合分析与预测

  4. 矩阵特征值的意义与总结

  5. 货币时间价值与企业投资决策

  6. 上证综指与深证成指的联动性分析

  7. 线性规划在经济数学中的应用与探析

  8. 杂拟谷盗体内共生菌沃尔...

  9. java+mysql车辆管理系统的设计+源代码

  10. 十二层带中心支撑钢结构...

  11. 河岸冲刷和泥沙淤积的监测国内外研究现状

  12. 当代大学生慈善意识研究+文献综述

  13. 中考体育项目与体育教学合理结合的研究

  14. 乳业同业并购式全产业链...

  15. 酸性水汽提装置总汽提塔设计+CAD图纸

  16. 大众媒体对公共政策制定的影响

  17. 电站锅炉暖风器设计任务书

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回