菜单
  

    设 (  ),则 (  ),从而

     这与 的假设矛盾,所以必有正整数 ,使得 .

        抽屉原理的一般形式的语言表述:如果 ( )只鸽子飞进 个笼子,则必有一个笼子,该笼子里至少有 只鸽子.

    (3)  抽屉原理的加强形式

    设 是有限集, 都是正整数.如果 , (  ),且   ,则必有正整数 ,使得 .

    证明  若不然,  (  ),此时

    这与 矛盾,所以必有正整数 ,使得 .

    (4)  抽屉原理的无限形式

        把无穷多件物体放进 个抽屉,则至少有一个抽屉里有无穷个物体.

    证明(反证法)  假设 个抽屉中放进物体的个数是有限个,则 个有限数相加所得数必是有限数,这与题设相矛盾,故假设不成立.

    2.3  抽屉原理的解题特征与关键

    抽屉原理的解题特征:题目中含有可以构造抽屉的元素,根据元素特征构造抽屉,把元素放入抽屉,运用抽屉原理解题.

    运用抽屉原理解题的关键是:构造抽屉,然后利用抽屉原理解决问题.

    2.4  运用抽屉原理解题的四种常见题型

     (1)  直接运用原理  题目中已知的条件符合抽屉原理中的要求,可以直接应用原理解决问题.

    (2)  逆用原理  题目中已知的条件符合抽屉原理的结论,题目中缺少应用抽屉原理的条件,然后求解符合应用抽屉原理的条件的题型.

        (3)  构造抽屉运用原理  题目中已知的条件于抽屉原理需要的条件没有必然的关系,然后根据题目中的条件构造抽屉,将元素放入抽屉中,最后应用抽屉原理解决问题的题型.

    (4)  多次顺用原理  题目中的已知条件符合运用抽屉原理的条件,但是运用一次抽屉原理不能解决题目中的问题,要多次运用抽屉原理才能解决题目中的问题的题型.

    3  抽屉的构造方法

    抽屉的构造方法大致可以归结为两大类:一类是用利用整除性质构造抽屉,一类是用几何元素构造抽屉.其实质是对对象进行恰当的分类,根据题目要证明的结论选取抽屉,抽屉选的好,选的巧,可以得出非常漂亮的结果.源'自:751`!论~文'网www.751com.cn

    3.1  利用整除性质

    (1) 利用整数构造抽屉

    对于说明处理形如“不大于 的 个正整数中,其中必有两个正整数相等”这类问题,可以把不大于 的正整数这个整体部分看作成一个抽屉.

    例1  某地 年共出生 人,试证明:这 人中至少有 人是同日生.

    证明   年共 天,把每一天视为一个抽屉,根据抽屉原理,必有一天中至少有

    两名婴儿出生,即他们的生日相同.

    说明  本题利用整数来构造抽屉,把一年中的每一天视为一个抽屉.

    (2) 利用余数构造抽屉

    用余数构造抽屉就是一个整数被 元素除的余数只有 这 种可能.如果有多于 个数,则一定有两个数关于 同余,而这两个数的差一定能被 整除.利用关于 的同余数作抽屉,把所要讨论的整数放进各个同余数的抽屉里.

    例2  任取 个自然数,其中必有两个数的差是 的倍数.

    分析  一般地,任给 (   )个自然数,其中必有两个数的差是 的倍数.本题利用余数来构造抽屉.

    证明  任意一个自然数被 除的余数只能是 三种,根据所得余数,可以把有的自然数分成三类:{余数为 的自然数},{余数为 的自然数},{余数为 的自然数},把他们看做三个抽屉,余数相同的自然数在一个抽屉里.

  1. 上一篇:浅谈中学生数学建模能力的培养策略
  2. 下一篇:浅谈矩阵方程的求解
  1. 复变函数中辐角原理的应用举例

  2. 随机贴现因子的基本特征及其应用研究

  3. 重庆市旅游业发展状况及...

  4. 旋转曲面的面积和旋转体体积的求法及其应用

  5. 函数施瓦茨连续性及其性质

  6. 容斥原理及其应用表现形式

  7. 南京市近六十年暴雨降水...

  8. 电站锅炉暖风器设计任务书

  9. 大众媒体对公共政策制定的影响

  10. 中考体育项目与体育教学合理结合的研究

  11. 十二层带中心支撑钢结构...

  12. java+mysql车辆管理系统的设计+源代码

  13. 河岸冲刷和泥沙淤积的监测国内外研究现状

  14. 当代大学生慈善意识研究+文献综述

  15. 乳业同业并购式全产业链...

  16. 酸性水汽提装置总汽提塔设计+CAD图纸

  17. 杂拟谷盗体内共生菌沃尔...

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回