菜单
  

    2.3 换元的方法源.自|751,:论`文'网www.751com.cn

    换元的方法主要有:局部换元、三角换元、均值换元等.[3]

    局部换元,将原本式子中的一部分用新的变量替代而做的代换,这种方法有时会使原本式子中变量增多,但是可以起到简化式子,清晰结构或者降次等作用,常常使解题更加方便

    三角换元,应用于去根号,或者将三角形式变换为易求型,主要利用已知代数式中与三角知识中有某点联系进行换元.这里主要注意圆的表达式可以用三角函数来替换.但是要注意换元后的定义域问题.

    均值换元,是指在某些问题中,已知两未知量的和,这时可将两个未知量用它们的均值和一个新变量来表示,从而使计算化繁为简.

    不同的题型,需要使用换元的方法不同,我们在使用换元法时也要遵循有利于运算、标准化的原则,不能盲目的去代换,这里要注意代换后的元的取值范围是否改变. 

    2.4 换元的意义

       使用换元的方法不仅可以使一道复杂的算式简化,而且可以将问题分步解决.换元法是中学数学中重要的一种思想方法,掌握换元法可以使学生的思维更具有条理性,能发散学生的思维,让解题方法变得多样性,锻炼学生的思维逻辑能力.所以换元法是中学生必须掌握的一种基本数学思想.让中学生在掌握知识的同时对数学思想以及数学思维有全新的认识,让学生对于学习数学感到轻松而有趣,同时也为日后学习高等数学打下坚实的基础.   

    3  换元法在中学数学中的应用

    3.1 换元法在因式分解中的应用

    用换元法分解因式,它的基本思路就是将多项式中的某一部分用新的变量替换,这里换元法只是将原来式子的形式变得简单,让学生好操作,从而使复杂的问题简单化.

    例一:分解因式: .

    分析:用传统方式先去括号,再做分解工作量很大,在此可以把 、 看作整体.

    解:设  则:

    原式= 本题用的是“局部换元法”.从式子的特征看,把 及 各看作一个整体用 和 进行换元.先用 和 来分解因式,将题目解出,再将 及 带入,进行化简,得出最终结果.方法简单,过程巧妙,训练学生思维.

     

  1. 上一篇:自然数1在函数与不等式中的妙用
  2. 下一篇:矩阵在几何变换中的应用
  1. 时间序列预测方法在股票市场上的应用

  2. 浅析产品成本计算方法

  3. 彩色图像去马赛克算法综述

  4. 压缩感知重建算法的实现与比较

  5. 变换法在求解常微分方程中应用

  6. 旋转曲面的面积和旋转体体积的求法及其应用

  7. 典型图论优化问题的解法探讨

  8. 乳业同业并购式全产业链...

  9. java+mysql车辆管理系统的设计+源代码

  10. 河岸冲刷和泥沙淤积的监测国内外研究现状

  11. 电站锅炉暖风器设计任务书

  12. 大众媒体对公共政策制定的影响

  13. 酸性水汽提装置总汽提塔设计+CAD图纸

  14. 当代大学生慈善意识研究+文献综述

  15. 杂拟谷盗体内共生菌沃尔...

  16. 十二层带中心支撑钢结构...

  17. 中考体育项目与体育教学合理结合的研究

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回