菜单
情况一:对于具有旋转对称轴的像差函数
对于拥有圆形光瞳的光学系统,它的像差函数的展开形式是一个泽尼克多项式 的完整的集合,而得到的这一系列项在单位圆内是正交的,该像差函数的形式如下:
(2.1)
在这里, 是由目标点的位置的展开项系数决定的,n和m是正整数(包含零), 且为偶数,同时
(2.2)
是正交情况下的泽尼克多项式,其中 是克罗内克(Kronecker) ,同时
(2.3)
是含有 , ,,以及 的 的 次多项式。径向圆多项式 是 的偶数次还是奇数次的多项式,是由 或 的奇偶性决定的。与之相似,当 , ,当 是奇数时, , 是偶数的时候, 。泽尼克多项式具有正交性,利用下面的等式加以验证
根据下式可以计算出泽尼克多项式展开项的系数
此式的作用和正交关系式(2.1)的作用重叠。
泽尼克多项式具有唯一性,这是由于它是只包含 和 这两个变量的多项式。泽尼克多项式有如下特点:单位圆上保持正交性;当坐标轴绕圆心旋转时,它的数学形式保持不变;每对允许的 和 值均存在泽尼克多项式[17]。
情况二:对于不含旋转对称轴的像差函数
对于没有包括旋转对称轴的光学系统,它的像差函数由 项和 项这两个项组成。而根据实际情况,它是由误差造成的,大气扰动和加工等因素都能对这类误差有所贡献。这种像差函数及其展开方式是由Noll在1976年提出的。本文为了得到表征波面斜率的正交多项式,采用的正是这一种展开方式。根据Noll的规则展开像差函数,就能够得到形式为正交泽尼克多项式 的展开式
(2.8)
此处 是展开项的系数,于是这个多项式能够表示为
是式(2.3)中得到的径向多项式。根据前面的讨论, 和 是自然数,同时 是偶数。由于参数 表示多项式的最高阶 ,它表示多项式的径向度数或者阶数, 可以称作方位角频率[17]。
共3页:
上一页
1
2
3
下一页
上一篇:
MATLAB微光图像增强技术研究
下一篇:
全双工MIMO系统干扰抑制技术研究
新型结构钙钛矿太阳能电池的制备和表征
光纤型点源阵列发生器点...
用于倾斜波面干涉仪(T...
倾斜波面干涉仪的不同点...
十二层带中心支撑钢结构...
中考体育项目与体育教学合理结合的研究
酸性水汽提装置总汽提塔设计+CAD图纸
大众媒体对公共政策制定的影响
乳业同业并购式全产业链...
杂拟谷盗体内共生菌沃尔...
河岸冲刷和泥沙淤积的监测国内外研究现状
当代大学生慈善意识研究+文献综述
java+mysql车辆管理系统的设计+源代码
电站锅炉暖风器设计任务书
主页
计算机
机械
自动化
关闭菜单
栏目
毕业论文
计算机论文
经济论文
生物论文
数学论文
物理论文
机械论文
新闻传播论文
音乐舞蹈论文
法学论文
文学论文
材料科学
日语论文
英语论文
化学论文
自动化
管理论文
艺术论文
会计论文
土木工程
电子通信
食品科学
教学论文
医学论文
体育论文
论文下载
研究现状
任务书
开题报告
外文文献翻译
文献综述
范文
菜单
毕业论文
刷新
分享
收藏
关于
关闭
关闭
分享本页
返回
关闭
暂无收藏
全部清除
关闭菜单
About
751论文网手机版...
主页:
http://www.751com.cn
关闭
返回