菜单
  

    在微分先行控制方案中微分环节的输出信号包括了被控变量及其变化速度值。将它作为测量值输入到比例积分调节器中,这样使系统克服超调的作用加强,从而补偿过程滞后,达到改善系统控制品质的目的。微分先行控制的方框图如图3.2所示。
     
    图3.2 微分先行的PID控制算法方框图
    图3.2中GC(s)表示比例积分调节器。TDs+1表示先行的微分环节,G(s)表示被控对象传递函数中不含时间滞后的部分,e-τs表示被控对象传递函数中的时间滞后部分。采用微分先行控制比采用常规PID控制形式相比系统传递函数少了一个零点。因此,虽然两种方式都采用了比例、微分和积分环节,但采用PI的微分先行控制方案可较好抑制系统的超调量[2]。
    3.1.3  中间微分反馈的PID控制算法
    与微分先行控制方案的思想类似,采用中间微分反馈控制方案能加速系统的反应速度进而改善系统的控制质量。中间微分反馈控制的方框图如图3.3所示。
     
    图3.3 中间微分反馈控制的PID控制算法方框图
    由图3.3可见,GC(s)为系统的微分项,只是对系统输出起作用,并作为控制量的一部分,这样的方式能在被控参数变化时及时根据变化的速度大小附加校正作用。微分校正作用与PI调节器的输出信号无关,仅在动态时起作用,而在静态时或被控参数变化速度恒定时失去作用。中间微分反馈控制方法能有效克服超调现象,缩短调节时间,而且不需要特殊设备。因此,这种控制形式具有一定的实际应用价值。但是这种控制方式仍有较大超调且响应速度很慢,不适应于控制精度要求高的场合[2]。
    3.2  Smith补偿控制算法
    在工业生产中,控制通道往往不同程度地存在着纯滞后。纯滞后的存在,使被控参数不能及时反映扰动的影响,即使执行器接收到控制信号后立即动作,也需要经过滞后(时间)之后,才能作用于被控参数。这样必存在较大的超调量和较长的过渡过程。为了改善大滞后系统的控制品质,1957年O.J.Simth提出了一种以过程模型为基础的大滞后预估补偿控制算法。这里采用的补偿算法与前馈补偿不同,是按照对象特性,设计一种模型加入到反馈控制系统,估计出对象在扰动作用下的动态响应,提早进行补偿,使控制器提前动作,从而降低超调量,并加速调节过程,Smith补偿控制算法的方案如图3.4所示,经补偿后,传递函数特征方程消除了时间项,也就消除了时滞对系统控制品质的影响。
  1. 上一篇:基于NI ELVIS的交通灯控制系统设计+程序框图
  2. 下一篇:Lyapunov具有执行器饱和的离散周期系统研究
  1. 基于生物质高效厌氧制甲...

  2. Lyapunov带废气再循环的可变...

  3. WinCC生物柴油提炼系统监控软件的设计

  4. 应用电磁驱动气门提高柴...

  5. 单片机生物安全柜进出口风量的监控

  6. 船舶柴油机建模及转速控制仿真研究

  7. 重型卡车柴油机电控系统设计

  8. 大众媒体对公共政策制定的影响

  9. 乳业同业并购式全产业链...

  10. 十二层带中心支撑钢结构...

  11. 酸性水汽提装置总汽提塔设计+CAD图纸

  12. java+mysql车辆管理系统的设计+源代码

  13. 中考体育项目与体育教学合理结合的研究

  14. 当代大学生慈善意识研究+文献综述

  15. 河岸冲刷和泥沙淤积的监测国内外研究现状

  16. 电站锅炉暖风器设计任务书

  17. 杂拟谷盗体内共生菌沃尔...

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回