40多年来,有限单元法的应用已由弹性力学平面问题扩展到空间问题和板壳问题,由静力平衡问题扩展到稳定性问题、动力学问题和波动问题,从固体力学扩展到传热学、流体力学、电磁学等领域,分析对象从弹性材料扩展到粘弹性粘塑性、复合材料等,经过多年发展,有限元理论基础已经相当完善了,还开发出了一批通用和专用的有限元软件,能够很成功地解决整机、机械、土建、电磁学、物理、气象、桥梁、造船、机电、宇航、核能以及国际工程等领域众多的大型科学和工程计算难题,有限元软件已经成为了推动社会发展和科技进步的生产力,并产生了巨大的经济效益及社会效益。
纵观当今国际上CAE 软件的发展情况,可以看出有限元分析方法的一些发展趋势:
1、与CAD软件的无缝集成
当今有限元分析软件的一个发展趋势是与通用CAD软件的集成使用,即在用CAD软件完成部件和零件的造型设计后,能直接将模型传送到CAE软件中进行有限元网格划分并进行分析计算,如果分析的结果不满足设计要求则重新进行设计和分析,直到满意为止,从而极大地提高了设计水平和效率。
2、更为强大的网格处理能力
有限元法求解问题的基本过程主要包括:分析对象的离散化、有限元求解、计算结果的后处理三部分。由于结构离散后的网格质量直接影响到求解时间及求解结果的 正确性与否,近年来各软件开发商都加大了其在网格处理方面的投入,使网格生成的质量和效率都有了很大的提高。
3、由求解线性问题发展到求解非线性问题
随着科学技术的发展,线性理论已经远远不能满足设计的要求,许多工程问题如材料的破坏与失效、裂纹扩展等仅靠线性理论根本不能解决,必须进行非线性分析求解。
4、由单一结构场求解发展到耦合场问题的求解
有限元分析方法最早应用于航空航天领域,主要用来求解线性结构问题,实践证明这是一种非常有效的 数值分析方法。而且从理论上也已经证明,只要用于离散求解 对象的单元足够小,所得的解就可足够逼近于精确值。
5、程序面向用户的开放性
随着商业化的提高,各软件开发商为了扩大自己的市场份额,满足用户的需求,在软件的功能、易用性等方面花费了大量的投资,但由于用户的要求千差万别,不管 他们怎样努力也不可能满足所有用户的要求,因此必须给用户一个开放的环境。
1.1.2 有限元分析的步骤
对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。有限元求解问题的基本步骤通常为:
第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。
第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网格越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一。
第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。
第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成 单元矩阵(结构力学中称刚度阵或柔度阵)。