动态稳定悬浮。目前国内还没有一个实际应用的例子,原因是磁力轴承是集多学科为一体的高科技产品,有许多理论和技术问题尚待解决。
(3)、高速磁悬浮电机高速磁悬浮电机(Bearing less Motors)是近年提出的一个新研究方向[7],它集磁悬浮轴承和电动机于一体,具有自悬浮和驱动能力,不需要任何独立的轴承支撑,且具有体积小、临界转速高等特点,更适合于超高速运行的场合,也适合小型乃至超小型结构。国外自90年代中期开始对其进行了研究,相继出现了永磁同步型磁悬浮电机、开关磁阻型磁悬浮电机、感应型磁悬浮电机等各种结构。其中感应型磁悬浮电机具有结构简单,成本低,可靠性高,气隙均匀,易于弱磁升速,是最有前途的方案之一。传统的电机是由定子和转子组成,定子与转子之间通过机械轴承连接,在转子运动过程中存在机械摩擦,增加了转子的摩擦阻力,使得运动部件磨损,产生机械振动和噪声,使运动部件发热,润滑剂性能变差,严重的会使电机气隙不均匀,绕组发热,温升增大,从而降低电机效能,最终缩短电机使用寿命。磁悬浮电机利用定子和转子励磁磁场问“同性相斥,异性相吸”的原理使转子悬浮起来,同时产生推进力驱使转子在悬浮状态下运动。磁悬浮电机的研究越来越受到重视,并有一些成功的报道。如磁悬浮电机应用在生命科学领域,现在国外已研制成功的离心式和振动式磁:悬浮人工心脏血泵,采用无机械接触式磁悬浮结构不仅效率高,而且可以防止血细胞破损,引起溶血、凝IfIL和血栓等问题。磁悬浮血泵的研究不仅为解除心血管病患者的疾苦,提高患者生活质量,而且为人类延续生命具有深远意义。
在我国,磁悬浮技术的研究是从80年代初开始的,目前己掌握了磁悬浮列车技术。进行高速磁悬浮列车这类课题的研究耗资巨大,在目前国内情况下不能采取国外以试验为主的研究方法,主要从理论上进行研究,在此基础上进行模拟实验,为我国实际应用磁悬浮技术提供理沦依据。进行磁悬浮其它应用技术的研究,可以实现学科间的交叉、渗透,推动磁悬浮高技术产品的开发与应用,因此具有十分重要的理论意义和现实意义。
1.2 磁悬浮控制方法介绍
在磁悬浮的许多实际应用中,都要求磁悬浮系统的悬浮气隙有较大的工作范围。但由于磁悬浮力.电流.气隙之间的非线性特性,系统模型开环不稳定。至少需要输出反馈进行闭坏控制,才能够实现稳定悬浮。为了设计一个性能良好的悬浮控制器,基于磁悬浮系统的稳定性控制问题受到了广泛而又深入的研究。
传统工业控制中多采用成熟的PID控制调节器,其中比例环节可以加快系统反应速度,积分环节可以消除静差,调节系统刚度;微分环节可以调节系统阻尼特性,改善系统的动态品质。PID调节器结构简单,调节方便,应用成熟。但是在高精度的磁悬浮技术场合,工况的复杂性和磁场本身的非线性使得传统PID控制器难以满足工程需要。对磁悬浮模型的稳定控制通常是将非线性磁悬浮模型在平衡点附近进行泰勒展开,忽略高阶项以后,便得到一阶线性化模型。这种线性化模型在磁悬浮控制中得到了广泛应用,并已在工程上验证了它的实用价值,但使用这种线性化方法设计的控制策略也有其局限性。由于线性化模型是在平衡点附近得到的,当系统的平衡点改变时,系统的动态特性会显著改变,控制策略将迅速恶化,影响系统稳定。此时,线性控制律往往不能满足系统稳定性的要求。为此需要更加先进的控制方法[2]。 磁悬浮系统的智能控制器设计+MATLAB仿真(4):http://www.751com.cn/zidonghua/lunwen_63034.html