菜单
  

    Choy, H. S., Chan, K. W., 2003. Modeling cutter swept angle at cornering cut. International Journal of CAD/CAM, 3(1), 1-12.

    Elber, G., Cohen, E., Drake, S., 2005. MATHSM: Medial axis transform toward high speed machining of pockets. Computer-Aided Design, 37(2), 241-250.

    Ferreira, J. C., Ochoa, D. M., 2013. A method for generating trochoidal tool paths for 2½D pocket milling process planning with multiple tools. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 0954405413487897.

    Ibaraki, S., Yamaji, I., Matsubara, A., 2010. On the removal of critical cutting regions by trochoidal grooving. Precision Engineering, 34(3), 467-473.

    Kline, W. A., DeVor, R. E., Lindberg, J. R., 1982. The prediction of cutting forces in end milling with application to cornering cuts. International Journal of Machine Tool Design and Research, 22(1), 7-22.

    Liu, X., Ding, Y. P., Yue, C., Zhang, R., Tong, X., 2015. Off-line feedrate optimization with multiple constraints for corner milling of a cavity. The International Journal of Advanced Manufacturing Technology, 1-9.

    Otkur, M., Lazoglu, I., 2007. Trochoidal milling. International Journal of Machine Tools and Manufacture, 47(9), 1324-1332.

    Persson, H., 1978. NC machining  of  arbitrarily  shaped  pockets. Computer-Aided Design, 10(3), 169-174.

    Pleta, A., Ulutan, D., Mears, L., 2014. Investigation of Trochoidal Milling in Nickel-Based Superalloy Inconel 738 and Comparison With End Milling. In ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference (pp. V002T02A058-V002T02A058). American Society of Mechanical Engineers.

    Rauch, M., Duc, E., Hascoet, J. Y., 2009. Improving trochoidal tool paths generation and implementation using process constraints modelling.International Journal of Machine Tools and Manufacture, 49(5), 375-383.

    Rauch, M., Hascoet, J. Y., 2007. Generation of plunging and trochoidal toolpaths for pocket milling. Mecanique & Industries, 8(5), 445-453.

    Spence, A. D., Altintas, Y., 1994. A solid modeller based milling process simulation and planning system. Journal of Manufacturing Science and Engineering, 116(1), 61-69.

    Tarng, Y. S., Shyur, Y. Y., 1993. Identification of radial depth of cut in numerical control pocketing routines. International Journal of Machine Tools and Manufacture, 33(1), 1- 11.

    Uhlmann, E., Fürstmann, P., Rosenau, B., Gebhard, S., Gerstenberger, R., Müller, G., 2013. The potential of reducing the energy consumption for machining TiAl6V4 by using innovative metal cutting processes. 11th Global Conference on Sustainalble Manufactruing, september, berlin.

    概述:当以高速铣削模式加工模具的口袋时,由于存在较高数量的切割材料,口袋狭窄区域或拐角处的刀具负载可能急剧增加。本文提出了一种考虑铣削力,加工工具和孔几何的摆线加工方法。首先提出了摆线加工中接合角几何建模的方法。分析铣削力的最大值和平均值;同时分析了摆线加工过程中铣削力曲线与啮合角曲线的对应关系。基于摆线加工的基础实验,获得了铣削力和刀具磨损的结果;然后提出了一种适用于空心摆线铣削加工的控制策略。基于用于摆线铣加工的控制策略,提出了腔摆线铣削加工的两种实现。最后进行腔体加工的比较实验。与进给率调节方法相比,摆线加工可以更好地控制铣削力和拐角处的狭缝和刀具磨损。铣削力和加工振动较小,刀具磨损明显降低。论文网

     

    关键词:高速铣; 摆线加工; 铣削力

     

    1.介绍

     

    高速铣削在提高生产效率,加工精度,表面质量等方面提供了各种优势,已成功应用于模具行业,促进了其快速发展。 轮廓平行刀具路径是腔体模具的常见高速铣削方法,其中刀具路径通常基于轮廓偏移和交点计算。 然而,角部和狭窄区域(如狭槽)可能容易出现在轮廓之间。 如果不采取特殊处理,高速加工时常常会出现以下问题:(1)工具与未切割材料之间的接合角度或接合弧长度大大增加,导致接触材料急剧增加。 (2)刀具负载量在拐角或槽处可能高得多,导致刀具疲劳或损伤更大。 在高速铣削较硬的材料时,这些问题尤其严重。

  1. 上一篇:空调与制冷技术英文文献和中文翻译
  2. 下一篇:压力测量的压电传感器英文文献和中文翻译
  1. 低燃油中的硫的氧化模型...

  2. 高速切削加工在模具制造...

  3. PCBN刀具高速切削加工英文文献和中文翻译

  4. 高速切削加工组合机床英文文献和中文翻译

  5. 机床铣削稳定性英文文献和中文翻译

  6. 高速切削加工英文文献和中文翻译

  7. 精密控制的高速注塑机英文文献和中文翻译

  8. 全球化对中国传统节日文化的影响

  9. 广州港港区2万吨级集装箱...

  10. 汽轮机转子模拟实验台设计任务书

  11. SolidWorks摩托车减震器多功...

  12. 菊芋对滨海盐碱地土壤理化性质的影响

  13. 浅析《喧嚣与骚动》中杰生性格形成的原因

  14. FPGA地面SAR成像系统数据采集及控制电路设计

  15. 《挪威的森林》中的男性形象分析

  16. 调节定向对用户决策行为的影响研究

  17. 单亲家庭子女心理辅导文献综述和参考文献

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回