菜单
  

    The radius of the previous offset circle is set as R1, the radius of the current offset circle is set as R2, and the tool radius is set as r. Obviously, |CD|=r,|CE1|=r,

    |O1D|=|O1S|= R1, |O2E|= R2, R1=rtro1+r,  R2=rtro2+r.

    To avoid a tedious calculation at the circular intersection, a geometric modelling method for the engagement angle in trochoidal machining is proposed as follows. It mainly includes two sections (Figs.3 b-c).

    (1) Geometric modelling on the first section SE

    Calculating angle  ∠E1CO1

    Fig. 3b shows that the cutter rolls along the curve SE and that the tool centre trajectory is S’E’. The coordinates of the cutter centre C(xc,yc) can be computed using

    the tangency point E1  and vector

    E1C .

    The length of CO1  is

    CO1   

    In addition, the length of E1O1   is

    E1O1    

    Obviously, from the geometric relationship, ∠E1CO1 can be calculated by the following formula:

    cos E1CO1

    ( CO1

    CE1

    E1O1

    ) /(2 * CO1   * CE1 )

    (2)

    ( CO1

    r 2

    E1O1

    ) /(2 * CO1   * r)

    Calculating the angle  ∠DCO1

    ∠DCO1 is an interior angle of the triangle △DCO1, and its range is 0<∠DCO1<π. It can be obtained using the cosine theorem:

    cos∠DCO1=(|CO1|2+r2–R12)/(2*|CO1|*r) (3)

    Calculating the engagement angle   ∠DCE1

    Obviously, the engagement angle ∠DCE1 satisfies the following geometric formula:

    atro=∠DCE1=2π–∠E1CO1–∠DCO1 (4)

    When SE1 increases in the variation range, the engagement angle with corresponding change may be calculated using this geometric calculation.

    (2) Geometric modelling of the second section EGHE

    Establishing the trajectory equation for tool centre

    The moving trajectory of the cutter centre C is the arc centred by O2 (xO2, yO2) with radius R2-r. Therefore, the following equations for the variation in C(xc, yc) may be established.

    xc=xO2 +(R2–r)*cosφ

    yc=yO2 + (R2–r)*sinφ (5)

    Calculating the angle  ∠DCO1

    Obviously, ∠DCO1 is an interior angle of the triangle △DCO1, and its range is  0<

    ∠DCO1<π.

    From the geometric relationship, |CD|=r,|O1D|=R1 are known, and the length of   CO1 is h2=( xc–0)2+( yc–0)2,

    According to the cosine theorem,

    cos∠DCO1=(h2+r2–R12)/(2*h*r) (6)

    The angle ∠DCO1 can be obtained by the inverse cosine.

    Calculating the angle  ∠E1CO1

     

    The angle ∠E1CO1 may be calculated as the vector dot product of

    O2 C

    and

    CO1  .

    However, because ∠E1CO1 is likely to be larger than π (see Fig. 3c), the relationship of the vector cross product is required to identify whether ∠E1CO1 is greater than or less than π.

    The vector quantity

    CO1   is set as a=[ax,ay,0], and

    ax  = –xO2 – (R2–r)*cosφ

    ay  = –yO2 – (R2–r)*sinφ

    The vector quantity

  1. 上一篇:空调与制冷技术英文文献和中文翻译
  2. 下一篇:压力测量的压电传感器英文文献和中文翻译
  1. 低燃油中的硫的氧化模型...

  2. 高速切削加工在模具制造...

  3. PCBN刀具高速切削加工英文文献和中文翻译

  4. 高速切削加工组合机床英文文献和中文翻译

  5. 机床铣削稳定性英文文献和中文翻译

  6. 高速切削加工英文文献和中文翻译

  7. 精密控制的高速注塑机英文文献和中文翻译

  8. 全球化对中国传统节日文化的影响

  9. 广州港港区2万吨级集装箱...

  10. 汽轮机转子模拟实验台设计任务书

  11. SolidWorks摩托车减震器多功...

  12. 菊芋对滨海盐碱地土壤理化性质的影响

  13. 浅析《喧嚣与骚动》中杰生性格形成的原因

  14. FPGA地面SAR成像系统数据采集及控制电路设计

  15. 《挪威的森林》中的男性形象分析

  16. 调节定向对用户决策行为的影响研究

  17. 单亲家庭子女心理辅导文献综述和参考文献

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回