摘要作为固体火箭发动机的全部动力源,复合固体推进剂的性能至关重要。近年来迅速发 展起来的一种新型推进剂 NEPE,能量高,使用温度范围广,代表了现代高能推进剂的发 展方向。为了更好的描述 NEPE 的力学性能与温度的关系,我们在不同温度下对其进行了 等速拉伸和松弛实验,并通过 WLF 模型和数值仿真,将实验数据和拟合数据进行对比。 以时温等效原理为基础,引入移位因子,利用基于 Prony 级数的方法进行试验获取松弛 模量,结果显示 Prony 级数方法的结果与实验结果基本吻合。70151
通过实验和模型数值仿真方法的研究,分析了静态等速拉伸松弛条件下的 NEPE 的力 学性能和温度之间的相关性,对复合推进剂的力学性能分析做出进一步探索。
毕业论文关 键 词: 时温等效原理; 松弛模量; 复合固体推进剂; 应力松弛实验
毕 业 设 计 说 明 书 外 文 摘 要
Title The mechanical behavior of composite solid propellant time-temperature superposition principle experimental research.
Abstract
As the power supply for solid rocket motor, the performance of composite solid propellant is crucial. A new type of NEPE propellants has developed rapidly in recent years.With high energy and using temperature range, the NEPE represents the development direction of modern high energy propellant. In order to describe the relationship between the mechanical properties of NEPE and temperature better, we conducted the constant velocity tensile and relaxation experiments at different temperatures, and compared the experimental data with fitted data through the WLF model and numerical simulation. Based on the equivalent principle of time temperature, introducing displacement factor, we use the traditional method,the joones method and based on Prony series to compare and test for relaxation modulus, the results showed that the Prony series method result was consistent with the experimental results. Through experiment and numerical simulation model , we analyses the correlation between the mechanical properties of NEPE and temperaturet under the condition of static constant tensile relaxation.The study made further exploration for mechanical properties of the composite propellant.
Keywords time-temperature superposition principle; Relaxation modulus; Composite solid propellant; stress relaxation test
目 次
1 引言 1
1.1 本课题研究背景及意义 1
1.2.1 推进剂简介 1
1.2.2 国内外研究综述 2
1.3.主要研究概括 4
2 NEPE 推进剂的拉伸力学性能测试 6
2.1 实验 6
2.2 数据处理及分析 9
3 NEPE 推进剂的松弛力学性能测试 10
3.1 实验 10
3.2 数据处理及分析 11
4 时温等效原理及松弛模量主曲线 13
4.1 时温等效原理 13
4.2 松弛模量主曲线的获取方法 15
4.2.1 温度移位因子的求法 20
4.3 松弛模量主曲线的验证