菜单
  

    第三种定义:设F是一个含有非零数的数集。如果F对于数的四则运算都封闭,那么称系统(F;+,-,×,&pide;)为一个数域。
    举例:有理数域(Q,+, •),实数域(R,+, •),复数域(C,+, •),etc
    但整数集Z不是域,因为1/x不是整数。(整数集Z是一个环,更准确的说是整环)
    2.2序
    二元关系    
    数学上,二元关系(binary relation)用于讨论两个数学对象的连系。诸如算术中的「大于」及「等于」,几何学中的"相似",或集合论中的"为•..之元素"或"为•..之子集"。     
    二元关系有时会简称关系,但一般而言关系不必是二元的。集合 X 与集合 Y 上的二元关系是 R=(X, Y, G(R)),其中 G(R),称为R 的图,是笛卡儿积X × Y的子集。若 (x,y) ∈ G(R) ,则称x 是 R-关系于y ,并记作 xRy 或 R(x,y)。否则称a与b无关系R。
    但经常地我们把关系与其图等同起来,即:若 R ⊆ X × Y ,则R 是一个关系。
    二元关系可看作成二元函数,这种二元函数把输入元 x ∈ X 及 y ∈ Y 视为独立变量并求真伪值。若X=Y,则称 R为 X 上的关系。
    关系的性质主要有以下五种:自反性,反自反性,对称性,反对称性和传递性。
    偏序
    设R是集合X上的一个二元关系,若R满足:
    Ⅰ 自反性:对任意a∈X,有aRa;
    Ⅱ 反对称性(即反对称关系):对任意a,b∈X,若aRb,且bRa,则a=b;
    Ⅲ 传递性:对任意a, b,c∈X,若aRb,且bRc,则aRc。
  1. 上一篇:齐次线性方程组解空间的一道例题探讨
  2. 下一篇:一维混沌映射系统的分岔与相变研究
  1. 教师视野下我校校园道路交通安全调查与分析

  2. 中国各省份经济发展状况...

  3. 杭州市GDP与旅游收入的相关性分析与预测

  4. 黄金价格综合分析与预测

  5. 矩阵特征值的意义与总结

  6. 货币时间价值与企业投资决策

  7. 上证综指与深证成指的联动性分析

  8. 当代大学生慈善意识研究+文献综述

  9. 电站锅炉暖风器设计任务书

  10. 酸性水汽提装置总汽提塔设计+CAD图纸

  11. 杂拟谷盗体内共生菌沃尔...

  12. 十二层带中心支撑钢结构...

  13. java+mysql车辆管理系统的设计+源代码

  14. 大众媒体对公共政策制定的影响

  15. 乳业同业并购式全产业链...

  16. 中考体育项目与体育教学合理结合的研究

  17. 河岸冲刷和泥沙淤积的监测国内外研究现状

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回