摘要:S变换是一种与短时傅里叶变换类似的时频变换法,其时窗宽度和时窗高度分别与频率成反比和线性关系。S变换是小波变换和窗口傅里叶变换的延伸,它能从Morlet小波为基波的小波变换和采用高斯窗的窗口傅里叶变换推导出来。因此,它具有多分辨率、线性、与傅里叶频谱保持联系等特点。本论文讨论了傅里叶变换轮廓术、窗口傅里叶变换轮廓术和小波变换轮廓术;分析了S变换基本理论,并与窗口傅里叶变换、小波变换进行了比较;研究了基于S变换滤波解相法的条纹解相及光学三维测量技术,并讨论了门限滤波法和平顶汉宁滤波法两种滤波方法。 55210
毕业论文关键词:S变换,条纹分析,光学三维测量,滤波器
Abstract: The S transform, a method of time-frequency transform, is similar to the short-time Fourier transform. It’s width of windows is inversely proportional to the frequency and a linear relationship between the height of windows and frequency respectively. S transform is an extension of the wavelet transform and the window Fourier transform. It can be derived from the wavelet transform with Morlet wavelet function and the window Fourier transform with Gaussian window function. So, it has the characteristics of multi-resolution, linearity and keeping relationship with Fourier transform. The paper discussed the optical 3-D measurement technology and Fourier transform profilometry, window Fourier transform profilometry and Wavelet transform profilometry; analyzed the basic theory of S transform, and compared the window Fourier transform and wavelet transform; Analyzed the phase demodulation based on S transform filtering method, and discussed two types of filtering methods, which are the threshold filtering and the flat-top Hanning filtering.
Key words: S-transform, fringe pattern analysis, optical 3-D measurement, filter
目 录
1 引言 1
2 光学三维测量技术 1
2.1 傅里叶变换轮廓术 1
2.2 窗口傅里叶变换轮廓术 3
2.3 小波变换轮廓术 5
3 S变换基本原理 7
3.1 S变换的形式 7
3.2 窗口傅里叶变换与S变换 8
3.3 小波变换与S变换 9
4 S变换滤波解相法用于条纹分析 10
4.1 基于S变换的条纹分析 10
4.2 S变换滤波解相法 11
结 论 15
参考文献 16
致 谢 17
1 引言
光学三维测量技术[1]是利用光学仪器得到物体三维空间信息的方法和技术,在信息光学和光学计量领域中占有重要的地位。在机器视觉、工业检测、影视特技、实物仿形、虚拟现实、医学诊断等领域,有着划时代的意义和巨大的发展前景。目前常用的三维测量方法是基于时频分析理论的窗口傅里叶变换轮廓术[1,2](WFTP)和小波变换轮廓术[1,3](WTP)。
采用时频分析技术的窗口傅里叶变换(WFT)和小波变换(WT)克服了傅里叶变换(FT)不能处理复杂、瞬时信号的不足,具有局部分析能力,能够处理非平稳信号。WFT的时频分辨率由其窗口宽度决定,窗口越窄,分辨率越高,而且时间分辨率和频率分辨率存在相互制约的关系。但是,WTF的窗口形状和大小固定不变,所以其时间分辨率和频率分辨率不能同时达到最高。WT能够提供一个随频率改变的时频窗口,从而具有变分辨率的性能,但变换的冗余性使其失去了逆变换特性。源.自|751,:论`文'网www.751com.cn