摘要在实际工程与应用中经常会遇到长度、面积、角度计算的问题。如果在参考椭球面上处理这些问题,不但计算量大,而且容易出错。此时将参考椭球面按照一定的数学公式投影到高斯平面上,那么平面的长度、角度、面积的计算就变得简单且计算的精度高。还有在实际中,我们还会遇到大比例尺测图,此时国家一般提供的6°带坐标就不能满足精度要求,需要进行换带计算变成3°带使之达到精度要求。40945
在这里是基于matlab的高斯投影换算,根据大地测量所学的基本知识,利用高斯投影坐标正反算的计算公式进行编程。在高斯投影坐标正算中,根据精度要求达到0.001m,故选取高斯投影正算展开式的前四项。在高斯投影坐标反算中,关键是能够运用迭代的方法将垂足纬度求出并精度达到0.0001″。对于高斯投影换带计算问题,主要是先利用高斯投影坐标反算求出大地经纬度,并以此为过渡,再使用高斯投影坐标正算就完成了高斯投影换带的问题。最后运用 建立简洁的 界面,实现高斯投影换算的问题。
毕业论文关键词: ,高斯坐标正算, 高斯坐标反算 ,高斯换带计算
Abstract In engineering and application, we often encounter the problem of calculation of length, area, Angle. If dealing these problems on the reference ellipsoid ,it will be of great amount of calculation and error .According to certain mathematical formula projection to Gauss plane, it will become simple to calculate the length, Angle, area with high precision . And in practice, though providing the coordinates of 6°,in order to meet the precision of large scale mapping,we need to change the coordinates of 6°band into 3 ° band .
In this paper, based on MATLAB , according to the basic knowledge of geodesy survey, using the positive and negative of Gauss projection calculation formula for programming is the main idea.According to the accuracy requirement of 0.001 m, I select the first four items of expanded equation of Gauss positive formula . In the negative of Gauss formula, the key to solve it is to make sure the precision of pedal latitude meeting the precision of 0.0001 ". For Gauss projection in changing band, first, calculated by using the positive of Gauss projection formula can get the coordinate of latitude and longitude.Then using the coordinate of latitude and longitude with the negative of Gaussian projection formula will get the final coordinate of new band. Finally Gauss projection conversion problem will be solved by the concise interface of GUI of MATLAB.
Key words: MATLAB, Gauss positive formula, Gauss negative formula , change band of Gauss projection.
目 录
摘 要 I
Abstract II
1 绪论 - 1 -
1.1 研究目的与意义 - 1 -
1.2 国内外研究情况 - 1 -
1.3 研究方法与步骤 - 1 -
2 MATLAB简介 - 2 -
2.1 变量名命名规则 - 2 -
2.2 运算符号 - 2 -
2.3 常见数学函数和表达式规则 - 3 -
2.4 程序语句 - 3 -
2.5 GUI介绍 - 5 -
3 大地坐标系和测量平面直角坐标系 - 7 -
3.1 大地坐标系 - 7 -
3.2 高斯平面直角坐标系 - 8 -
3.3 独立平面直角坐标系 - 9 -
4 高斯投影 - 10 -
4.1 高斯投影定义 - 10 -
4.2 高斯投影特点 - 10 -
4.3 高斯投影分带 - 10 -
5 高斯投影计算 - 12 -
- 上一篇:基于matlab的数字图像处理技术的研究
- 下一篇:高师院校数学教育实习现状及其改进对策探索
-
-
-
-
-
-
-
电站锅炉暖风器设计任务书
十二层带中心支撑钢结构...
java+mysql车辆管理系统的设计+源代码
大众媒体对公共政策制定的影响
杂拟谷盗体内共生菌沃尔...
当代大学生慈善意识研究+文献综述
酸性水汽提装置总汽提塔设计+CAD图纸
中考体育项目与体育教学合理结合的研究
河岸冲刷和泥沙淤积的监测国内外研究现状
乳业同业并购式全产业链...