摘要函数最值问题跟实际生活密切相关,在公司生产、科技研究上都离不开求函数最值得问题,是一类特殊的数学问题,在近几年来数学考试或者数学竞赛中都是重点考察的知识点之一。故解决这类问题,要联系各种所学的知识,进行比较,分析相同点与不同点,做到对题型的彻底理解,不至于面对新题型不知所措。44244
函数最值问题在中学中是很重要的一部分,其在中考与高考中所占的分数比例也呈上升趋势。本人这次写这篇论文的目的就是想要提醒学生们和老师们函数最值问题的重要性,和重难点所在,然后提供一些常见的解题方法,与一些解题技巧。希望看了这篇文章的学生或者老师有些启发或感悟。函数最值得的概念是指:对于一个给定的函数,如果在其定义域内都有意义,那么必然存在最大值与最小值,该值由自变量的取值决定。目前很多学生对函数最值问题感到难以理解,或者一知半解,老师讲的时候听懂了,到了自己动手做又发现少了这个或者少了那个,老师们也对该怎么让学生彻底理解函数问题正在苦苦搜寻方法中。但是函数问题在中考或者高考中所占的分数不减,确实值得大家一起来探讨总结经验与方法。
Most problems with the actual function of the value of life is closely related to the company's production, technological research are inseparable issues most worth seeking function is a special class of mathematical problems, in recent years the math test or mathematical competitions are the focus of inspection One of knowledge. So to solve this problem, to contact the various knowledge learned, compare, analyze the similarities and differences, so that a thorough understanding of the kinds of questions, and will not face new kinds of loss.
The value function is a very important part in the secondary schools, the proportion of its share of scores in the entrance examination and also on the rise. I write this purpose of this paper is to want to remind students and teachers the most important function of the value of the problem, and the heavy and difficult location, and then provide some common problem-solving methods, and some problem-solving skills. I hope reading this article, some of the students or teachers inspire or sentiment. The most worthwhile concept of functions means: for a given function, if it makes sense to define the domain, then there must be the maximum and minimum, the value is determined by the values of the independent variables. At present, many students find it difficult to function most value to understand the problem, or scanty, when the teacher understand, to the DIY and found less and less of this or that, the teachers also allow students a thorough understanding of how the function of the problem is hard search methods. But the function of the problem in the college entrance exam, or the fraction diminished, really worth together to explore lessons learned and methods.
毕业论文关键词:函数; 最值; 换元法; 线性规划法; 定义域; 值域
Keyword: Function; the most value-for-element method; linear programming; domain and range
目 录
1引言....(5)
2求函数最值得几种解法探讨....(6)
2.1判别式法..(6)
2.2配方法(6)
2.3均值不等式法.(7)
2.4换元法(7)
2.5三角参数法....(8)
2.6线性规划法....(8)
2.7求导法(8)
2.8向量法(9)
3求解函数最值时应注意的一些问题.(9)
3.1注意定义域....(9)
3.2注意值域.(10)
3.3注意参数的约束条件.(10)
3.4注意对判别式的运用.(10)