( )当 时, 时, ,
故只需证明当 时, .
当 时,函数 在 上单调递增.
又 , ,故 在 上有唯一实根 ,且 .
当 时, ;当 时, ,
从而当 , 取得最小值.
由 得 , ,
故 .
综上,当 时, .
1.3 分类讨论法
分类讨论的思想在求解函数类数学问题中有广泛的应用.用分类讨论解答函数问题的主要步骤是:首先分析题目条件,明确讨论的对象,确定对象的全体;然后确定分类标准,正确进行分类,做到不重不漏并力求最值;有时也会遇到二级分类;其次逐类进行讨论、求解.最后归纳小结,得出综合后的结论.学好这些方法,领悟这些方法在解题中的应用,掌握基本的解题技巧,为今后更深层次的学习打下基础.
例3(2013年高考数学浙江卷理科第22题)已知 ,函数
.( )求曲线 在点 处的切线方程;
( )当 时,求 的最大值.
【解析】( )由题意得 ,故 .
又 ,所以所求的切线方程为 .
( )由于 , ,故
(i)当 时,有 ,此时 在 上单调递减,
故 .
(ii)当 时,有 ,此时 在 上单调递减,
故 .
(iii)当 时,设 , ,
则 , .
列表如下:
单调递增 极大值
单调递减 极小值
单调递减
由于 , ,
故 , .从而 .
所以 .
(1)当 时, .
又 ,
故 .
(2)当 时, ,且 .
又 ,所以
当 时, .故 .
当 时, .故 .
综上所述,
1.4 最值法
许多求函数中参数范围的问题, 可归结为求函数最值(或上、下界)的问题, 然后运用导数( 目的为确定单调性)或基本不等式等知识求解.这里本质上是运用了等价转化的思想,因为直接求解原问题中含参数的不等式往往比较复杂,而转化为最值(或上、下界)问题后,就只需要将最值与所给临界值进行比较.
例4(2013年高考数学大纲卷理科第9题)若函数 在 是增函数,则 的取值范围是
- 上一篇:矩阵秩的不等式及其应用+文献综述
- 下一篇:最优化在金融学中的应用+文献综述
-
-
-
-
-
-
-
电站锅炉暖风器设计任务书
乳业同业并购式全产业链...
中考体育项目与体育教学合理结合的研究
酸性水汽提装置总汽提塔设计+CAD图纸
十二层带中心支撑钢结构...
当代大学生慈善意识研究+文献综述
杂拟谷盗体内共生菌沃尔...
大众媒体对公共政策制定的影响
java+mysql车辆管理系统的设计+源代码
河岸冲刷和泥沙淤积的监测国内外研究现状