菜单
  

                              

    或者与它的等价方程

                              的解

    经分离变量后,可得(1)的通解 

                             

         容易看出,  也是原方程的一个解。现在来研究这个解 有什么特殊的地方。由图我们看到解 上的每一点 处相切,这种特殊的积分曲线 称为奇积分曲线,他所对应的解就是奇解,这就是奇解的产生。 源:自~751·论`文'网·www.751com.cn/

       奇解是微分中一个非常重要的概念,包络是几何中一个非常重要的概念,由于它们在几何意义上的共通性,研究包络的性质对研究奇解有着很大的帮助。那么什么是包络?现在我们给出包络的定义:

        设给定单参数曲线族 ,  是连续可微函数,该曲线族的包络是指这样的曲线;它本身并不含在曲线族上,但在曲线上的每一点都有曲线族上的一条曲线和他在这点相切。

        通过包络和奇解概念的了解,我们就会不禁猜想包络和奇解有什么联系呢?我们来探讨一下他们的关系: 若方程 的积分曲线族的包络如果存在,则必定是方程的奇解,实际上,在积分曲线族包络上的点 的x,y和斜率y´的值和在该店与包络相切的点x,y 和 y´满足方程 ,这就是说包络是积分曲线。其次,在包络的每一点,积分曲线族中都至少有一条曲线与包络相切。因此包络就是奇解,由此我们得出一个结论,如果得出方程 的通积分,那么这个通积分的包络就是方程的奇解。

  1. 上一篇:符号函数及其应用
  2. 下一篇:Lebesgue积分和Riemann积分的区别和联系
  1. 几种常用随机变量模拟的实现

  2. 一类金融偏微分方程解的适定性研究

  3. 变换法在求解常微分方程中应用

  4. 分数阶微分方程积分边值问题正解的存在性

  5. 常染色体的遗传问题

  6. 矩阵对数矩阵指数矩阵平方根

  7. Nehari流形在微分方程中的一个应用

  8. java+mysql车辆管理系统的设计+源代码

  9. 河岸冲刷和泥沙淤积的监测国内外研究现状

  10. 电站锅炉暖风器设计任务书

  11. 酸性水汽提装置总汽提塔设计+CAD图纸

  12. 大众媒体对公共政策制定的影响

  13. 杂拟谷盗体内共生菌沃尔...

  14. 当代大学生慈善意识研究+文献综述

  15. 十二层带中心支撑钢结构...

  16. 中考体育项目与体育教学合理结合的研究

  17. 乳业同业并购式全产业链...

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回