菜单
  

    R centered at the point C on a horizontal plane. The plane of the disk is always vertical. Let l ⃗denote the unit vector along the axis of attachment of the rollers, τ⃗ the unit vector lying in the wheel plane tangent to the rim at the point of contact. The kinematic  constraint  relation  for  a  Mecanum  wheel  implies  that  the  vector       of

    velocity ⇀v

    of the point M of contact of the wheel with the plane points along   the

    line perpendicular to the axis of the roller, i.e., the projection of the velocity of the point M onto the roller axis is equal to zero (see Fig. 1, right). The kinematic constraint relation has the form

    v⃗M ⋅ l = 0. ð1Þ

    The velocity  v⃗M  is defined by the equation

    ——!

    v⃗M = v⃗C + ω × CM, ð2Þ

    where v⃗C is the velocity of the center C and ω⃗ is the angular velocity of the disk. Let φ be the angle of rotation of the disk about the axis passing through the point C perpendicular to the plane of the disk (ω = φ̇). The kinematic relation (1) becomes

    ðv⃗C  − Rφ̇ τ⃗Þ ⋅ l = 0 ð3Þ

    or

    v⃗C  ⋅ l =

    Rφ̇ sin δ, τ⃗ ⋅ l =

    sin δ. ð4Þ

    Here  δ  is  the  angle  between  the  vector  of  velocity  ⇀v between the normal to roller axis and the vector  τ⃗).

    and  the  vector  τ⃗  (angle

    On the basis of the analysis of the kinematic constraints of type (4) it is shown that if a mechanical system is based on n Mecanum wheels in such a way that

    (a) n ≥ 3; (b) not all vectors li⃗ are parallel to each other; (c) the points of contact of the wheels with the plane do not lie on one line, then it is always possible to find

    control functions φi (i = 1, ... , n) that implement any prescribed motion of the system’s center of mass (see e.g. Martynenko and Formal’skii   2007).

    Fig. 2 A vehicle with four Mecanum wheels

    Consider a model of a four-wheeled vehicle with Mecanum wheels (see Fig. 2). Let m 0 be the mass of the body, m 1 the mass of each of the wheels, J0 the mass moment of inertia of the body about the vertical axis passing though the center of mass, J1 the mass moment of inertia of each wheel about its axis of rotation, and J2 the moment of inertia of each wheel about the vertical axis passing through the center of the wheel.

    The coordinates of the center mass of the system C in the reference frame (inertial system) fO, e⃗x, e⃗y, e⃗zg are xC , yC , and R is the radius of the wheels; the

    .   !. .   !.

    quantities .C——O 1. = .C——O 2. = d are the distances from the center of mass to the axes

    . . . .

    of the wheel pairs, and 2 l is the distance between the centers of the wheels of one axis. Let ψ  be the angle between the vector O——1—O 2  and the vector e⃗x   (i.e. angle   ψ

    describes the orientation of the vehicle). The corresponding kinematic relations are obtained on the basis of Eq. (4) for each wheel in the   form

    ẋC sinðψ + δ1Þ − ẏC cosðψ + δ1Þ − ψ ̇ðl sin δ1 + d cos δ1Þ = Rφ̇1 sin δ1,

  1. 上一篇:固液搅拌罐的CFD模拟英文文献和中文翻译
  2. 下一篇:高填充聚苯硫醚变温模具控制英文文献和中文翻译
  1. 模具设计中的功能建模英文文献和中文翻译

  2. 固液搅拌罐的CFD模拟英文文献和中文翻译

  3. 模拟列车断裂性能的工具英文文献和中文翻译

  4. 注射成型过程中的聚丙烯...

  5. 钢筋混凝土倒T梁采用锚固...

  6. 汽车乘员舱的声振耦合英文文献和中文翻译

  7. 立体光照成型的注塑模具...

  8. STM32智能天然气监控终端的...

  9. BiFeO3的国内外研究现状

  10. 国内外FMECA分析的发展研究现状

  11. 超精密工程与纳米技术英文文献和中文翻译

  12. 外贸出口竞争力国内外研究现状

  13. 机枪架座国内外研究现状和发展趋势

  14. 营养条件调控马疫链球菌...

  15. H90与D6AC钢感应熔敷焊工艺试验研究

  16. 影响大学生网络购物的因素调查问卷

  17. OFDM系统的实时业务资源分配算法研究

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回