菜单
  
    ð5Þ

    ẋC sinðψ − δ2Þ + ẏC cosðψ − δ2Þ + ψ ̇ðl sin δ2 + d cos δ2Þ = Rφ̇2 sin δ2, ð6Þ

    ẋC sinðψ − δ3Þ + ẏC cosðψ − δ3Þ − ψ ̇ðl sin δ3 + d cos δ3Þ = Rφ̇3 sin δ3, ð7Þ

    ẋC sinðψ + δ4Þ − ẏC cosðψ + δ4Þ + ψ ̇ðl sin δ4 + d cos δ4Þ = Rφ̇4 sin δ4, ð8Þ

    Equations (5)–(8) define four non-holonomic constraints. Note, that if translational motions (ψ ̇ = 0) or rotations about the center of mass (ẋC = ẏC = 0) are allowed, then the constraints become holonomic.

    3 Dynamic Equations

    The equations of motion of the robot can be obtained by using any method of non-holonomic mechanics, for example, by deriving Lagrange’s equations with multipliers or Appel’s equations. The mechanical system under consideration has three degrees of freedom, its configuration is characterized by 7 Lagrangian vari- ables, xC , yC , ψ , φ1, φ2, φ3, and φ4, subject to 4 constraints (5)–(8). For the  case

    where all δi = π 4 (i = 1, ... , 4), the governing equations have the simplest form

    .. p

    xC ðmR2 + 4J1Þ + 4ẏCψ ̇J1 = R   ffi2ffiffiðM1 sinðψ + π 4̸ Þ

    + M2 cosðψ + π 4̸   Þ + M3 cosðψ + π 4̸   Þ + M4 sinðψ + π 4̸   ÞÞ,

    ð9Þ

    .. p

    yC ðmR2 + 4J1Þ − 4ẋCψ ̇J1 = − R   ffi2ffiffiðM1 cosðψ + π 4̸ Þ

    − M2 sinðψ + π 4̸   Þ − M3 sinðψ + π 4̸   Þ + M4 cosðψ + π 4̸   ÞÞ,

    ð10Þ

    .JCR2  + 4J1ðl + dÞ2. ψ ̈ = − Rðl + dÞðM1 − M2 + M3 − M4Þ. ð11Þ

    Here  Mi  are   the   torques   applied   to   the   respective   wheels   (i = 1, ... , 4), m = m0 +4 m1 is the total mass of the system, JC = J0 + 4J2 + 4m1ðl2 + d2Þ is the moment of inertia of the entire system relative to the center of   mass.

    If the torques Mi (i = 1, ... , 4) are defined as functions of time, then the angle of rotation of the robot about its center of mass ψ ðtÞ can be expressed in terms of quadratures. For the solutions that correspond to the rotation of the robot about its center of mass at a constant angular velocity (ψ ̇ = Ω = const), the torques applied to the wheels are related by

    M1 + M3 = M2 + M4. ð12Þ

    The motions with Ω = const involve, apart from the rotation about the center of mass, the translatory motion of the robot (Ω = 0, ψ = const). Such motions are of interest for applications.

    In this case, the system of Eqs. (9) and (10) is a nonhomogeneous system of linear differential equations with constant coefficients and can be solved in an explicit form.

    We assume that the torques developed by each of the four identical DC motors are defined by (see e.g. Gorinevsky et al.  1997)

    MiðtÞ = cuUiðtÞ − cvφ̇iðtÞ,

  1. 上一篇:固液搅拌罐的CFD模拟英文文献和中文翻译
  2. 下一篇:高填充聚苯硫醚变温模具控制英文文献和中文翻译
  1. 模具设计中的功能建模英文文献和中文翻译

  2. 固液搅拌罐的CFD模拟英文文献和中文翻译

  3. 模拟列车断裂性能的工具英文文献和中文翻译

  4. 注射成型过程中的聚丙烯...

  5. 钢筋混凝土倒T梁采用锚固...

  6. 汽车乘员舱的声振耦合英文文献和中文翻译

  7. 立体光照成型的注塑模具...

  8. STM32智能天然气监控终端的...

  9. BiFeO3的国内外研究现状

  10. 国内外FMECA分析的发展研究现状

  11. 超精密工程与纳米技术英文文献和中文翻译

  12. 外贸出口竞争力国内外研究现状

  13. 机枪架座国内外研究现状和发展趋势

  14. 营养条件调控马疫链球菌...

  15. H90与D6AC钢感应熔敷焊工艺试验研究

  16. 影响大学生网络购物的因素调查问卷

  17. OFDM系统的实时业务资源分配算法研究

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回