菜单
  

    ð20Þ

    M4 min = pffi2ffiffi.xC

    − pffi2ffiffi.yC

    ðmR2 + 4J1Þ + 4ẏCψ ̇ J1. sinðψ + π 4̸ Þ ð̸ 4RÞ

    ðmR2 + 4J1Þ − 4ẋCψ ̇ J2. cosðψ + π 4̸ Þ ð̸ 4RÞ

    ð21Þ

    1

    ..

    + ψ .JCR2 + 4J1ðl2 + d2Þ. ð̸ 4Rðl + dÞÞ .

    By applying a similar criterion (the minimum of the sum of the squares) to the voltages defined by Eqs. (14)–(16), we  obtain

    U1 min = pffi2ffiffi.xC

    p

    ðmR2 + 4J

    ..

    1Þ + 4ẏCψ ̇ J1 + 4ẋccv. sinðψ + π 4̸ Þ ð̸ 4RcuÞ

    ffi2ffiffi.yC ðmR2 + 4J1Þ − 4ẋCψ ̇ J1 + 4ẏccv. cosðψ + π 4̸ Þ ð̸ 4RcuÞ

    ψ ðJCR2 + 4J1ðl + dÞ2Þ ð̸ 4Rðl + dÞcuÞ − ψ ̇ðl + dÞcv ð̸ RcuÞ ,

    U2 min = pffi2ffiffiðxC ðm + 4J1Þ + 4ẏCψ ̇ J1 + 4ẋccvÞ cosðψ + π 4̸ Þ ð̸ 4RcuÞ

    +    2  yC ðm + 4J2Þ − 4ẋCψ ̇ J2 + 4ẏccv    sinðψ + π 4̸ Þ ð̸ 4RcuÞ

    ð22Þ

    ð23Þ

    1 1

    ..

    + ψ ðJCR2 + 4J1ðl + dÞ2Þ ð̸ 4Rðl + dÞcuÞ + ψ ̇ðl + dÞcv ð̸ RcuÞ ,

    Fig. 3   Mobile robot based

    on the 4 WD Mecanum wheel mobile kit from NEXUSrobot and controlled by a plugin based software “RobotController”

    ..

    ð    ðm + 4J1Þ + 4ẏCψ ̇ J1 + 4ẋccvÞ cosðψ + π 4̸ Þ ð̸ 4RcuÞ

    + pffi2ffiffi.yC

    ..

    ðm + 4J2

    Þ − 4ẋCψ ̇ J2

    + 4ẏccv. sinðψ + π 4̸  Þ ð̸ 4RcuÞ

    ð24Þ

    − ψ ðJCR2 + 4J1ðl + dÞ2Þ ð̸ 4Rðl + dÞcuÞ − ψ ̇ðl + dÞcv ð̸ RcuÞ ,

    U4 min = pffi2ffiffi.xC

    ðmR2 + 4J

    1Þ + 4ẏCψ ̇ J1 + 4ẋccv. sinðψ + π 4̸ Þ ð̸ 4RcuÞ

    − pffi2ffiffi.yC

    ðmR2 + 4J1Þ − 4ẋCψ ̇ J1 + 4ẏccv.

    cosðψ + π 4̸  Þ ð̸  4RcuÞ

    ð25Þ

    + ψ ðJCR2 + 4J1ðl + dÞ2Þ ð̸ 4Rðl + dÞcuÞ + ψ ̇ðl + dÞcv ð̸ RcuÞ .

    Constructing the optimal modes on the basis of integral criteria is reduced, as a rule, to numerical optimization procedures.

    5 Conclusion

    The kinematic and dynamic equations are derived for a four-wheeled robot with Mecanum wheels, subject to non-holonomic constraints (rolling without slipping). The optimal torques to be applied to the wheels and the voltages to be applied to the motors in order to provide a prescribed trajectory for the robot’s center of mass are found. To evaluate the theoretical results, a prototype of a mobile platform with four Mecanum wheels that implements the principles presented in the paper was used (see Fig. 3). The experimental data agree with the theoretical  predictions.

    Acknowledgments This study was supported by the Development Bank of Thuringia and the Thuringian Ministry of Economic Affairs with funds of the European Social Fund (ESF) under grant 2011 FGR 0127.

    References

    Campion, G., Bastin, G., & D’Andrea-Novel, B. (1996). Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Transactions on Robotics and Automation, 12(1), 47–62.

  1. 上一篇:固液搅拌罐的CFD模拟英文文献和中文翻译
  2. 下一篇:高填充聚苯硫醚变温模具控制英文文献和中文翻译
  1. 模具设计中的功能建模英文文献和中文翻译

  2. 固液搅拌罐的CFD模拟英文文献和中文翻译

  3. 模拟列车断裂性能的工具英文文献和中文翻译

  4. 注射成型过程中的聚丙烯...

  5. 钢筋混凝土倒T梁采用锚固...

  6. 汽车乘员舱的声振耦合英文文献和中文翻译

  7. 立体光照成型的注塑模具...

  8. STM32智能天然气监控终端的...

  9. BiFeO3的国内外研究现状

  10. 国内外FMECA分析的发展研究现状

  11. 超精密工程与纳米技术英文文献和中文翻译

  12. 外贸出口竞争力国内外研究现状

  13. 机枪架座国内外研究现状和发展趋势

  14. 营养条件调控马疫链球菌...

  15. H90与D6AC钢感应熔敷焊工艺试验研究

  16. 影响大学生网络购物的因素调查问卷

  17. OFDM系统的实时业务资源分配算法研究

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回