菜单
  

    Gorinevsky, D. M., Formalsky, A. M., & Schneider, A. Yu. (1997). Force control of robotics systems. CRC Press LLC.

    Ilon, B. E. (1975). Wheels for a course stable selfpropelling vehicle movable in any desired direction on the ground or some other base, US Patent   3876255.

    Martynenko, Yu. G., & Formal’skii, A. M. (2007). On the motion of a mobile robot with roller-carrying wheels. Journal of Computer and Systems Sciences International, 46(6), 976–983.

    Muir, P. F., & Neumann, C. P. (1990). Kinematic modeling for feedback control of an omnidirectional wheeled mobile robot. Autonomous robot vehicles (pp. 25–31). New-York: Springer.

    Tsai, C. -C., Tai, F. -C., Lee, Y. -R. (2011). Motion controller design and embedded realization for mecanum wheeled omnidirectional robots. In Proceedings of the 8th World Congress on Intelligent Control and Automation (pp. 546–551). Taipei,  Taiwan.

    Viboonchaicheep, P., Shimanda, A., & Kosaka, Y. (2003). Position rectification control for mecanum wheeled omni-directional vehicles. In Proceedings of the 29th Annual Conference of IEEE Industrial Electronics Society (pp. 854–859). Roanoke,  USA.

    Wampfer, G., Salecker, M., & Wittenburg, J. (1989). Kinematics, dynamics, and control of omnidirectional vehicles with mecanum wheels. Mechanics Based Design of Structures and Machines, 17(2), 165–177.

    Zimmermann, K., Zeidis, I., & Behn, C. (2009). Mechanics of terrestrial locomotion. With a focus on nonpedal motion systems. Berlin: Springer.

    Zimmermann, K., Zeidis, I., & Abdelrahman, M. (2014). Dynamics of mechanical systems with mecanum wheels. In Applied Non-Linear Dynamical Systems (pp. 271–279). Wien, New York: Springer.

    Adv. Manuf. (2016) 4:363–370 DOI 10.1007/s40436-016-0164-3

    Accuracy analysis of omnidirectional mobile manipulator with mecanum wheels

    Shuai Guo1  •  Yi Jin1  •  Sheng Bao1  •  Feng-Feng  Xi2

    Received: 10 January 2016 / Accepted: 11 November 2016 / Published online: 9 December  2016

    © Shanghai University and Springer-Verlag Berlin Heidelberg   2016

    Abstract This article is based on  the omnidirectional mobile manipulator with mecanum wheels built at Shang- hai University. The article aims to find and analyze the parameters of kinematic equation of the omnidirectional system which affects its motion accuracy. The method of solving the parameter errors involves three phases. The first step is equation operation to achieve the equation of rela- tive errors. The second step is to obtain the displacement errors of the system via experiment and combine the error results with kinematic equation deduction to solve the geometric parameter errors in two methods. The third step is to verify its validity via comparing experiments. We can then revise its kinematics equation  afterwards.

    Keywords Mecanum wheel · Displacement error · Monte Carlo analysis · Interval analysis

    1 Introduction

    Recently, with the development of industrial robots, the mobile robots have been used in various industries. Compared to traditional mobile robots, the omnidirec- tional mobile robots have a broad application prospect in aerospace and other fields, as it can move in any direction and    its    turning    radius    can    be    zero.       Mecanum

    omnidirectional mobile platform is a popular omnidirec- tional mobile robot. It can flexibly complete various tasks in  crowded space.

    The mobile platform built for riveting the rocket skin is shown in Fig. 1, which includes a mecanum omnidirec- tional mobile platform, laser sensors, a manipulator with six degrees of freedom. In order to make the mobile platform move precisely, we need to revise its movement equation. Muir and Neuman [1] have developed a kine- matic model of mecanum robot using  matrix  theory. Wang and Chang [2] carried out error analysis interns of distribution with four mecanum wheels. Shimada et al. [3] introduced a position corrective feedback control method using a vision sensor on mecanum-wheel omnidirectional vehicles. Qian et al. [4] developed a more detailed anal- ysis on the installation angle of roller. This paper does a further study from the perspective of the deformation  of the roller and provides two methods to revise its move- ment equation.

  1. 上一篇:固液搅拌罐的CFD模拟英文文献和中文翻译
  2. 下一篇:高填充聚苯硫醚变温模具控制英文文献和中文翻译
  1. 模具设计中的功能建模英文文献和中文翻译

  2. 固液搅拌罐的CFD模拟英文文献和中文翻译

  3. 模拟列车断裂性能的工具英文文献和中文翻译

  4. 注射成型过程中的聚丙烯...

  5. 钢筋混凝土倒T梁采用锚固...

  6. 汽车乘员舱的声振耦合英文文献和中文翻译

  7. 立体光照成型的注塑模具...

  8. STM32智能天然气监控终端的...

  9. BiFeO3的国内外研究现状

  10. 国内外FMECA分析的发展研究现状

  11. 超精密工程与纳米技术英文文献和中文翻译

  12. 外贸出口竞争力国内外研究现状

  13. 机枪架座国内外研究现状和发展趋势

  14. 营养条件调控马疫链球菌...

  15. H90与D6AC钢感应熔敷焊工艺试验研究

  16. 影响大学生网络购物的因素调查问卷

  17. OFDM系统的实时业务资源分配算法研究

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回