菜单
  

    2 System description and problem   statement

    2.1 Variables  in  motion equation

    Figure 2 shows the prototype robotic system built at Shanghai University. According to kinematic analysis   [5],

      its motion equation is shown  as

    & Shuai Guo guoshuai@shu.edu.cn

    V ¼ D0W; ð1Þ

    1 Shanghai Key Laboratory of Intelligent Manufacturing  and Robotics, Shanghai University, Shanghai, People’s  Republic

    2VX 3

    2 —R0 R0 —R0 R0    3

    of China

    where V ¼ 4VY 5; D0 ¼ 16

    R0 R0 R0 R0    7;

    44  R0

      R0

      R0         R0    5

    2 Department of Aerospace Engineering, Ryerson  University, Toronto, Canada

    x0 l0 þL — l0 þL — l0 þL l0 þL

    Fig. 1  3D-model of the mobile   robot

    2x1 3

    W ¼ 6x2 7: L is half of the distance from the front axle   to

    3

    Fig. 3  Mecanum wheel and  roller

    4 5

    x4

    the rear axle, l0 the transverse distance from the wheel centers which are also the contact points on the ground to the platform center line, a the mounting angle of the roller, R0 the radius of four wheels; x1, x2, x3 and x4 are angular velocities of the four wheels, respectively. All the param- eters  in   Eq.   (1)   are   defined   in   machine   design, L = 750 mm, l0  = 615 mm, R0  = 187.5 mm, a =   45°.

    Figure 3 is a view of a mecanum wheel and a roller. The roller is fitted on the edge of the mecanum wheel in angle a with its central axis, which can rotate freely around its central axis. The wheel relies on the friction that the roller acts on the ground to move. Because the material of its outer rim is usually rubbers, it will deform under pressure. Figure 4 is a view of distribution of roller outer rim deformation in its transverse section. F is the pressure on the roller, T the driving torque. The radiuses of wheels reduce differently under different pressures. The greater the

    Fig. 4  Distribution of roller  deformation

    pressure, the greater the deformation is. The deformation zone shifts with the action of driving torque and  the shifting causes the position of wheel center to change. From the force analysis of mecanum wheel [6], we know that with the wheel rotating, a driving torque is generated by the force in roller axial direction, so the position of the contact points will shift in axial direction. With the deformation of the roller, the R0  and l0  will   change.

     

    (a) (b)

    Fig. 2   a Prototype robotic system, b motion   model

    Fig. 5  Motion model of mobile   platform

    center O in X-direction; R1, R2, R3 and R4 are the  radiuses of four wheels, respectively. The direction of the arrow indicates the positive  direction.

  1. 上一篇:固液搅拌罐的CFD模拟英文文献和中文翻译
  2. 下一篇:高填充聚苯硫醚变温模具控制英文文献和中文翻译
  1. 模具设计中的功能建模英文文献和中文翻译

  2. 固液搅拌罐的CFD模拟英文文献和中文翻译

  3. 模拟列车断裂性能的工具英文文献和中文翻译

  4. 注射成型过程中的聚丙烯...

  5. 钢筋混凝土倒T梁采用锚固...

  6. 汽车乘员舱的声振耦合英文文献和中文翻译

  7. 立体光照成型的注塑模具...

  8. STM32智能天然气监控终端的...

  9. BiFeO3的国内外研究现状

  10. 国内外FMECA分析的发展研究现状

  11. 超精密工程与纳米技术英文文献和中文翻译

  12. 外贸出口竞争力国内外研究现状

  13. 机枪架座国内外研究现状和发展趋势

  14. 营养条件调控马疫链球菌...

  15. H90与D6AC钢感应熔敷焊工艺试验研究

  16. 影响大学生网络购物的因素调查问卷

  17. OFDM系统的实时业务资源分配算法研究

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回