菜单
  
    摘 要: 广义积分主要包括: 无穷限的广义积分和无界函数的广义积分, 以及含参变量的广义积分. 无穷限广义积分又可称无穷积分, 无界函数广义积分又可称无界函数积分或瑕积分. 广义积分是定积分突破条件限制的一个推广, 本文就针对广义积分的一致收敛性论述广义积分, 首先, 介绍广义积分的定义以及分类; 其次, 介绍柯西判别法、微分法和级数判别法对广义积分一致收敛问题的证明及应用; 最后, 进一步学会深入探讨的数学思想.29565
    毕业论文关键词: 广义积分; 收敛; 发散; 一致收敛性
    Research on the Problem of Uniform Convergence for the
     Generalized Integral
    Abstract: Improper integral includes: infinite limits of improper integral and unbounded functions, improper integrals, and generalized integral containing parameter. Infinite integrals can be called an improper integral, unbounded functions improper integral and infinite integral and defect integral. Condition of generalized integrals is definite integrals to break through an extension of the restrictions. This article aims at the convergence of generalized integral discusses improper integrals, and introduces the definitions and classifications of generalized integral; followed in introducing the Cauchy criterion, differential and series identification method of generalized integral proof and application of uniform convergence problem; at last learned to explore mathematical ideas.
    Key words: Improper integral; Convergence; Divergence; Uniform convergence
    目录
    摘 要    1
    引言    2
    1 无穷限广义积分    3
    1.1无穷限广义积分的定义    3
    1.2含参量无穷限反常积分    3
    2 瑕积分    9
    2.1瑕积分的定义    9
    2.2 含参量瑕积分    10
    3在证明相关定理时一致收敛的Cauchy准则的应用    13
    3.1在证明牛顿-莱布尼茨公式时Cauchy收敛准则的应用    14
    3.2在证明一致连续性定理时Cauchy收敛准则的应用    14
    结束语    15
    参考文献    16
    致谢    17
    广义积分中一致收敛问题的探讨
    引言
    无穷限广义积分(也称作无穷积分)、无界函数广义积分(也称作无界函数积分或瑕积分)都称为广义积分, 广义积分又被称为反常积分或者是非正常积分. 因为定积分的应用具有一定的局限性, 为了满足现代生活应用的需求化, 我们需要做的事情那就是突破定积分的这两个限制条件, 将定积分的概念加以推广, 把积分区间的有界拓广到无穷限区间积分, 被积函数在积分区间上的有界拓广到无界函数积分也即是瑕积分, 这就是我们本文所论述的广义积分也或者是反常积分.
    我们在研讨广义积分性质的同时, 一致收敛同样也发挥着重要作用, 即广义积分的一致收敛性在《数学分析》[1]一书中是很重要的知识点, 学生掌握其知识点并且也有一定的难度, 因此, 我们总结出广义积分一致收敛性的判别法, 如魏尔斯特拉斯M判别法[2]、狄利克雷判别法[2]等判别法, 这可以让学生对此有更深刻的理解和感悟,以便更好地培养学习的兴趣, 掌握数学知识并投入到社会生活中.
    在科学技术迅速发展的今天, 微积分的发展非常快速, 并且广义积分是随着高等数学发展起来的近代数学, 同时是高等数学中的一个很重要的概念, 为其他的学科解决了计算上的许多难题, 被广泛应用于各种问题, 也对其发展起了促进作用. 因此广义积分的一致收敛性在解决各种实际问题时, 它起到了至关重要的作用, 本论文根据广义积分的定义及其性质来讨论它的敛散性, 主要是对无穷限积分、无界函数积分的敛散性和含参变量广义积分的一致收敛性的判别方法进行探讨.
  1. 上一篇:留数定理的应用+文献综述
  2. 下一篇:正则函数的判定+文献综述
  1. 椭圆的生成路径研究

  2. 学讲计划数学课堂中合作...

  3. 行列式在高中数学中的应用

  4. 多项式拟合在变形数据分析中的应用

  5. 基于学情的初中数学变式教学设计平方差公式

  6. 因子分析在学生成绩综合评价中的应用

  7. 方差分析在小麦亩产量中的应用

  8. 乳业同业并购式全产业链...

  9. 河岸冲刷和泥沙淤积的监测国内外研究现状

  10. 电站锅炉暖风器设计任务书

  11. 杂拟谷盗体内共生菌沃尔...

  12. 大众媒体对公共政策制定的影响

  13. 中考体育项目与体育教学合理结合的研究

  14. 酸性水汽提装置总汽提塔设计+CAD图纸

  15. java+mysql车辆管理系统的设计+源代码

  16. 十二层带中心支撑钢结构...

  17. 当代大学生慈善意识研究+文献综述

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回