菜单
  

    由此可知,方程(1)有只与x有关的积分因子的充要条件是
    (∂M/∂y-∂N/∂x)/N=φ(x),                                                       (6)
    这里φ(x)仅为x的函数,假如条件(6)成立,则根据方程(5),可以求得方程(1)的一个积分因子 .

        存在只与y有关的积分因子
    同样,(1)有只与y有关的积分因子的充要条件是
    (∂M/∂y-∂N/∂x)/(-M)=φ(y),
    这里φ(y)仅为y的函数. 从而求得方程(1)的一个积分因子μ=e^∫▒〖φ(y)dy〗.

        存在 形式的积分因子
    由上述可得,方程(1)有 形式的积分因子的充要条件是
    (∂M/∂y-∂N/∂x) (M±N)^(-1)=f(x±y).
        存在 形式的积分因子
    方程(1)有 形式的积分因子的充要条件是
    (∂M/∂y-∂N/∂x) (My±Nx)^(-1)=f(x^2±y^2 ).

        存在 形式的积分因子
    方程(1)有 形式的积分因子的充要条件是
    1/(x^α y^β ) (∂M/∂y-∂N/∂x) (αN/x-βM/y)^(-1)=f(x^α y^β ),

    延伸1:存在形如μ(x,y)=F(η)形式的积分因子
    方程(1)具有形如μ(x,y)=F(η)积分因子的充要条件是:存在函数
    f(η),使(∂N/∂x-∂M/∂y)  1/f(η) =∂η/∂y M-∂η/∂x N成立,且积分因子
    μ(x,y)=F(η)=exp[∫▒〖f(η)dη〗].
    推论1:方程(1)有形如μ(x,y)=F(ax^u+bx^γ y^λ+cy^v)积分因子的充要条件是存在函数f(ax^u+bx^γ y^λ+cy^v),使
                                   (∂N/∂x-∂M/∂y)  1/f(ax^u+bx^γ y^λ+cy^v ) =bλx^γ y^(λ-1) M+cvy^(v-1) M-aux^(u-1) N-brx^(γ-1) y^λ N
    (其中a、b、c为不全为零的常数), 且积分因子
     μ(x,y)= exp[∫▒〖f(ax^u+bx^γ y^λ+cy^v)d(ax^u+bx^γ y^λ+cy^v)〗].

    推论2:方程(1)有形如μ(x,y)=F(ax^u+cy^v)积分因子的充要条件是存在函数f(ax^u+cy^v),使
    (∂N/∂x-∂M/∂y)  1/(f(ax^u+cy^v))=cvy^(v-1) M-aux^(u-1) N
    成立(其中a、c是不全为零的常数), 且积分因子
    μ(x,y)= exp[∫▒〖f(ax^u+cy^v)d(ax^u+cy^v)〗].

    推论3:方程(1)有形如 μ(x,y)=F(x^γ y^λ)积分因子的充要条件是存在函数f(x^γ y^λ)使 (∂N/∂x-∂M/∂y)  1/(f(x^γ y^λ))=〖λx〗^γ y^(λ-1) M-γx^(γ-1) y^λ N 成立,且积分因子
    μ(x,y)= exp[∫▒〖f(x^γ y^λ)d(x^γ y^λ)〗].
    证明:方程(1)有形如μ(x,y)=F(η)积分因子的充要条件是
    ∂FM/∂y=∂FN/∂x,

    ∂FM/∂y=M dF/dη  ∂η/∂y+F ∂M/∂y,∂FN/∂x=N dF/dη  ∂η/∂x+F ∂N/∂x,
    代入整理得
    (∂η/∂y M-∂η/∂x N)  dF/dη=F(∂N/∂x-∂M/∂y),

    ∂N/∂x-∂M/∂y=(∂η/∂y M-∂η/∂x N)  1/F  dF/dη=(∂η/∂y M-∂η/∂x N)  dlnF/dη,
    记                          
  1. 上一篇:论小学高年级学生不良学习习惯的矫正
  2. 下一篇:函数一致连续性的判断及应用
  1. 因子分析在学生成绩综合评价中的应用

  2. 时间序列预测方法在股票市场上的应用

  3. 浅析产品成本计算方法

  4. 彩色图像去马赛克算法综述

  5. 随机贴现因子的基本特征及其应用研究

  6. 压缩感知重建算法的实现与比较

  7. 变换法在求解常微分方程中应用

  8. 当代大学生慈善意识研究+文献综述

  9. 大众媒体对公共政策制定的影响

  10. 河岸冲刷和泥沙淤积的监测国内外研究现状

  11. 中考体育项目与体育教学合理结合的研究

  12. 酸性水汽提装置总汽提塔设计+CAD图纸

  13. 乳业同业并购式全产业链...

  14. 杂拟谷盗体内共生菌沃尔...

  15. 电站锅炉暖风器设计任务书

  16. 十二层带中心支撑钢结构...

  17. java+mysql车辆管理系统的设计+源代码

  

About

751论文网手机版...

主页:http://www.751com.cn

关闭返回